Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Tong Yin, Sven König

ABSTRACT

BACKGROUND: Body weight (BW) at different ages are of increasing importance in dairy cattle breeding schemes, because of their strong correlation with energy efficiency traits, and their impact on cow health, longevity and farm economy. In total, 15,921 dairy cattle from 56 large-scale test-herds with BW records were genotyped for 45,613 single nucleotide polymorphisms (SNPs). This dataset was used for genome-wide association studies (GWAS), in order to localize potential candidate genes for direct and maternal genetic effects on BW recorded at birth (BW0), at 2 to 3 months of age (BW23), and at 13 to 14 months of age (BW1314). RESULTS: The first 20 principal components (PC) of the genomic relationship matrix ([Formula: see text]) grouped the genotyped cattle into three clusters. In the statistical models used for GWAS, correction for population structure was done by including polygenic effects with various genetic similarity matrices, such as the pedigree-based relationship matrix ([Formula: see text]), the [Formula: see text]-matrix, the reduced [Formula: see text]-matrix LOCO (i.e. exclusion of the chromosome on which the candidate SNP is located), and LOCO plus chromosome-wide PC. Inflation factors for direct genetic effects using [Formula: see text] and LOCO were larger than 1.17. For [Formula: see text] and LOCO plus chromosome-wide PC, inflation factors were very close to 1.0. According to Bonferroni correction, ten, two and seven significant SNPs were detected for the direct genetic effect on BW0, BW23, and BW1314, respectively. Seventy-six candidate genes contributed to direct genetic effects on BW with four involved in growth and developmental processes: FGF6, FGF23, TNNT3, and OMD. For maternal genetic effects on BW0, only three significant SNPs (according to Bonferroni correction), and four potential candidate genes, were identified. The most significant SNP on chromosome 19 explained only 0.14% of the maternal de-regressed proof variance for BW0. CONCLUSIONS: For correction of population structure in GWAS, we suggest a statistical model that considers LOCO plus chromosome-wide PC. Regarding direct genetic effects, several SNPs had a significant effect on BW at different ages, and only two SNPs on chromosome 5 had a significant effect on all three BW traits. Thus, different potential candidate genes regulate BW at different ages. Maternal genetic effects followed an infinitesimal model. More... »

PAGES

4

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2010-07. New approaches to population stratification in genome-wide association studies in NATURE REVIEWS GENETICS
  • 2012-12. Partitioning additive genetic variance into genomic and remaining polygenic components for complex traits in dairy cattle in BMC GENETICS
  • 2013-12. Genome-wide association analyses for carcass quality in crossbred beef cattle in BMC GENETICS
  • 2010-12. Using the realized relationship matrix to disentangle confounding factors for the estimation of genetic variance components of complex traits in GENETICS SELECTION EVOLUTION
  • 2010-07. Common SNPs explain a large proportion of the heritability for human height in NATURE GENETICS
  • 2017-12. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle in GENETICS SELECTION EVOLUTION
  • 2009-12. Deregressing estimated breeding values and weighting information for genomic regression analyses in GENETICS SELECTION EVOLUTION
  • 2009-06. Mapping genes for complex traits in domestic animals and their use in breeding programmes in NATURE REVIEWS GENETICS
  • 2017-08-17. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein in ONCOGENE
  • 2011-07. Genomic inflation factors under polygenic inheritance in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2006-08. Principal components analysis corrects for stratification in genome-wide association studies in NATURE GENETICS
  • 2012-06. Improved linear mixed models for genome-wide association studies in NATURE METHODS
  • 2014-02. Advantages and pitfalls in the application of mixed-model association methods in NATURE GENETICS
  • 2017-01. Microbial genome-wide association studies: lessons from human GWAS in NATURE REVIEWS GENETICS
  • 2015-12. Genome-wide association study for calving performance using high-density genotypes in dairy and beef cattle in GENETICS SELECTION EVOLUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12711-018-0444-4

    DOI

    http://dx.doi.org/10.1186/s12711-018-0444-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111954465

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30727969


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Weight", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cattle", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Extracellular Matrix Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fibroblast Growth Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteoglycans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Troponin T", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Giessen", 
              "id": "https://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Institute of Animal Breeding and Genetics, Justus-Liebig-University Gie\u00dfen, Ludwigstr. 21b, 35390, Giessen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yin", 
            "givenName": "Tong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Giessen", 
              "id": "https://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Institute of Animal Breeding and Genetics, Justus-Liebig-University Gie\u00dfen, Ludwigstr. 21b, 35390, Giessen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u00f6nig", 
            "givenName": "Sven", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.3168/jds.2009-2686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000994999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-41-55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004549609", 
              "https://doi.org/10.1186/1297-9686-41-55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2015.05.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005798567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009497006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0117468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012594550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.critrevonc.2008.02.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012781058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015057090", 
              "https://doi.org/10.1038/ng.608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015057090", 
              "https://doi.org/10.1038/ng.608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016276818", 
              "https://doi.org/10.1038/ng.2876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/519795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2016-10887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019304066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2015-9621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021021838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2005.06.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023098571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2005.06.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023098571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.124057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025476327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.124057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025476327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1004219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026087862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5713/ajas.2014.14287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027773221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2009.00831.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030228737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2009.00831.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030228737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031184798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2013-7409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031206151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031429813", 
              "https://doi.org/10.1038/ng1847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031429813", 
              "https://doi.org/10.1038/ng1847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0093017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031862339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034591246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034591246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-13-44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035195689", 
              "https://doi.org/10.1186/1471-2156-13-44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040730668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2009-2992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041186874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2052.2012.02340.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042706799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1751731112001152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042868532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-14-80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043066390", 
              "https://doi.org/10.1186/1471-2156-14-80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043354004", 
              "https://doi.org/10.1038/nrg2813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043354004", 
              "https://doi.org/10.1038/nrg2813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-42-22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043558874", 
              "https://doi.org/10.1186/1297-9686-42-22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1634/stemcells.2006-0494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043565942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2012-5466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044599164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045203738", 
              "https://doi.org/10.1038/nmeth.2037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2052.2009.01998.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045809873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2052.2009.01998.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045809873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0126-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046081408", 
              "https://doi.org/10.1186/s12711-015-0126-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0126-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046081408", 
              "https://doi.org/10.1186/s12711-015-0126-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047890909", 
              "https://doi.org/10.1038/nrg.2016.132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051461847", 
              "https://doi.org/10.1038/nrg2575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051461847", 
              "https://doi.org/10.1038/nrg2575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2011.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051554988", 
              "https://doi.org/10.1038/ejhg.2011.39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2006-168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070885681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2012-5827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070888686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(00)74917-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074617542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(00)74917-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074617542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(03)73809-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075308797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(03)73987-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1076611950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(06)72097-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077162325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(07)72646-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077340105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(07)72646-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077340105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(07)72646-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077340105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077748021", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2017.80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084860963", 
              "https://doi.org/10.1038/onc.2017.80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0175971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084956645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0176474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085101876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-017-0356-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092568220", 
              "https://doi.org/10.1186/s12711-017-0356-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-017-0356-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092568220", 
              "https://doi.org/10.1186/s12711-017-0356-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-017-0356-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092568220", 
              "https://doi.org/10.1186/s12711-017-0356-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2017-13835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099745642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2017-13835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099745642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458929"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Body weight (BW) at different ages are of increasing importance in dairy cattle breeding schemes, because of their strong correlation with energy efficiency traits, and their impact on cow health, longevity and farm economy. In total, 15,921 dairy cattle from 56 large-scale test-herds with BW records were genotyped for 45,613 single nucleotide polymorphisms (SNPs). This dataset was used for genome-wide association studies (GWAS), in order to localize potential candidate genes for direct and maternal genetic effects on BW recorded at birth (BW0), at 2\u00a0to\u00a03\u00a0months of age (BW23), and at 13\u00a0to\u00a014\u00a0months of age (BW1314).\nRESULTS: The first 20 principal components (PC) of the genomic relationship matrix ([Formula: see text]) grouped the genotyped cattle into three clusters. In the statistical models used for GWAS, correction for population structure was done by including polygenic effects with various genetic similarity matrices, such as the pedigree-based relationship matrix ([Formula: see text]), the [Formula: see text]-matrix, the reduced [Formula: see text]-matrix LOCO (i.e. exclusion of the chromosome on which the candidate SNP is located), and LOCO plus chromosome-wide PC. Inflation factors for direct genetic effects using [Formula: see text] and LOCO were larger than 1.17. For [Formula: see text] and LOCO plus chromosome-wide PC, inflation factors were very close to 1.0. According to Bonferroni correction, ten, two and seven significant SNPs were detected for the direct genetic effect on BW0, BW23, and BW1314, respectively. Seventy-six candidate genes contributed to direct genetic effects on BW with four involved in growth and developmental processes: FGF6, FGF23, TNNT3, and OMD. For maternal genetic effects on BW0, only three significant SNPs (according to Bonferroni correction), and four potential candidate genes, were identified. The most significant SNP on chromosome 19 explained only 0.14% of the maternal de-regressed proof variance for BW0.\nCONCLUSIONS: For correction of population structure in GWAS, we suggest a statistical model that considers LOCO plus chromosome-wide PC. Regarding direct genetic effects, several SNPs had a significant effect on BW at different ages, and only two SNPs on chromosome 5 had a significant effect on all three BW traits. Thus, different potential candidate genes regulate BW at different ages. Maternal genetic effects followed an infinitesimal model.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12711-018-0444-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1014139", 
            "issn": [
              "0999-193X", 
              "1297-9686"
            ], 
            "name": "Genetics Selection Evolution", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "name": "Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages", 
        "pagination": "4", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f2aa9b8f5261a6530af19e354295fd43deaba6f9ce2cb1e9e5091ca42fe876b2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30727969"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114088"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12711-018-0444-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111954465"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12711-018-0444-4", 
          "https://app.dimensions.ai/details/publication/pub.1111954465"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29215_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12711-018-0444-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12711-018-0444-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12711-018-0444-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12711-018-0444-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12711-018-0444-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    297 TRIPLES      21 PREDICATES      94 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12711-018-0444-4 schema:about N1a2455445f824d0aa6114bae2cbe8fbf
    2 N34e6840fc02c4b10a5be0dd84125e02e
    3 N3eeb7de8864f4e64b4b60f8a62baba06
    4 N422b890c5d28475494010300e68e00a5
    5 N579e9bc2a3984856a983aea2a25e22df
    6 N64c6c7fe21894ec786f8c176b6dbfb0c
    7 N6922d554c7574740a318a104c1fb3711
    8 N8d665a1959864c4b92f00142bfda137f
    9 N9791e8a1923f4607afbb074e248167a1
    10 N9d77eafd759c4f03bab621669b3bdd47
    11 Nd7b8b5b7d6524807934832bd0d0b52c9
    12 Ne9bde73f66b64c19a15535f73c5010a5
    13 Nf7829e73a4be45fc862042d0a871e91f
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author Nb0bfa4039df14842af155b7b763f7d00
    17 schema:citation sg:pub.10.1038/75556
    18 sg:pub.10.1038/ejhg.2011.39
    19 sg:pub.10.1038/ng.2876
    20 sg:pub.10.1038/ng.608
    21 sg:pub.10.1038/ng1847
    22 sg:pub.10.1038/nmeth.2037
    23 sg:pub.10.1038/nrg.2016.132
    24 sg:pub.10.1038/nrg2575
    25 sg:pub.10.1038/nrg2813
    26 sg:pub.10.1038/onc.2017.80
    27 sg:pub.10.1186/1297-9686-41-55
    28 sg:pub.10.1186/1297-9686-42-22
    29 sg:pub.10.1186/1471-2156-13-44
    30 sg:pub.10.1186/1471-2156-14-80
    31 sg:pub.10.1186/s12711-015-0126-4
    32 sg:pub.10.1186/s12711-017-0356-8
    33 https://app.dimensions.ai/details/publication/pub.1077748021
    34 https://doi.org/10.1016/j.ajhg.2010.11.011
    35 https://doi.org/10.1016/j.bbrc.2015.05.053
    36 https://doi.org/10.1016/j.critrevonc.2008.02.008
    37 https://doi.org/10.1016/j.jmb.2005.06.066
    38 https://doi.org/10.1017/s1751731112001152
    39 https://doi.org/10.1086/519795
    40 https://doi.org/10.1093/bioinformatics/btm108
    41 https://doi.org/10.1093/nar/gkw1108
    42 https://doi.org/10.1111/j.1365-2052.2009.01998.x
    43 https://doi.org/10.1111/j.1365-2052.2012.02340.x
    44 https://doi.org/10.1111/j.1439-0388.2009.00831.x
    45 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
    46 https://doi.org/10.1371/journal.pcbi.1004219
    47 https://doi.org/10.1371/journal.pone.0093017
    48 https://doi.org/10.1371/journal.pone.0117468
    49 https://doi.org/10.1371/journal.pone.0175971
    50 https://doi.org/10.1371/journal.pone.0176474
    51 https://doi.org/10.1534/genetics.110.124057
    52 https://doi.org/10.1634/stemcells.2006-0494
    53 https://doi.org/10.2527/jas.2006-168
    54 https://doi.org/10.2527/jas.2012-5827
    55 https://doi.org/10.3168/jds.2009-2686
    56 https://doi.org/10.3168/jds.2009-2992
    57 https://doi.org/10.3168/jds.2011-4628
    58 https://doi.org/10.3168/jds.2012-5466
    59 https://doi.org/10.3168/jds.2013-7409
    60 https://doi.org/10.3168/jds.2015-9621
    61 https://doi.org/10.3168/jds.2016-10887
    62 https://doi.org/10.3168/jds.2017-13835
    63 https://doi.org/10.3168/jds.s0022-0302(00)74917-4
    64 https://doi.org/10.3168/jds.s0022-0302(03)73809-0
    65 https://doi.org/10.3168/jds.s0022-0302(03)73987-3
    66 https://doi.org/10.3168/jds.s0022-0302(06)72097-5
    67 https://doi.org/10.3168/jds.s0022-0302(07)72646-2
    68 https://doi.org/10.5713/ajas.2014.14287
    69 schema:datePublished 2019-12
    70 schema:datePublishedReg 2019-12-01
    71 schema:description BACKGROUND: Body weight (BW) at different ages are of increasing importance in dairy cattle breeding schemes, because of their strong correlation with energy efficiency traits, and their impact on cow health, longevity and farm economy. In total, 15,921 dairy cattle from 56 large-scale test-herds with BW records were genotyped for 45,613 single nucleotide polymorphisms (SNPs). This dataset was used for genome-wide association studies (GWAS), in order to localize potential candidate genes for direct and maternal genetic effects on BW recorded at birth (BW0), at 2 to 3 months of age (BW23), and at 13 to 14 months of age (BW1314). RESULTS: The first 20 principal components (PC) of the genomic relationship matrix ([Formula: see text]) grouped the genotyped cattle into three clusters. In the statistical models used for GWAS, correction for population structure was done by including polygenic effects with various genetic similarity matrices, such as the pedigree-based relationship matrix ([Formula: see text]), the [Formula: see text]-matrix, the reduced [Formula: see text]-matrix LOCO (i.e. exclusion of the chromosome on which the candidate SNP is located), and LOCO plus chromosome-wide PC. Inflation factors for direct genetic effects using [Formula: see text] and LOCO were larger than 1.17. For [Formula: see text] and LOCO plus chromosome-wide PC, inflation factors were very close to 1.0. According to Bonferroni correction, ten, two and seven significant SNPs were detected for the direct genetic effect on BW0, BW23, and BW1314, respectively. Seventy-six candidate genes contributed to direct genetic effects on BW with four involved in growth and developmental processes: FGF6, FGF23, TNNT3, and OMD. For maternal genetic effects on BW0, only three significant SNPs (according to Bonferroni correction), and four potential candidate genes, were identified. The most significant SNP on chromosome 19 explained only 0.14% of the maternal de-regressed proof variance for BW0. CONCLUSIONS: For correction of population structure in GWAS, we suggest a statistical model that considers LOCO plus chromosome-wide PC. Regarding direct genetic effects, several SNPs had a significant effect on BW at different ages, and only two SNPs on chromosome 5 had a significant effect on all three BW traits. Thus, different potential candidate genes regulate BW at different ages. Maternal genetic effects followed an infinitesimal model.
    72 schema:genre research_article
    73 schema:inLanguage en
    74 schema:isAccessibleForFree false
    75 schema:isPartOf N5a65576259e04b9eb6ef47c5e45d640a
    76 Ne54f56b6e9514828958197799355d0c0
    77 sg:journal.1014139
    78 schema:name Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages
    79 schema:pagination 4
    80 schema:productId N2461b67bd0bc4b68bdf8c5c3d17d9419
    81 N2a33c991c72f49a9bf4c075570ce6ad8
    82 N4ec45e790347474fa027c7059d7711f9
    83 N820af8ad58414d87be37f4e3d3c6ded0
    84 Nf5be3a575f104b67b96861f0bb67415a
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111954465
    86 https://doi.org/10.1186/s12711-018-0444-4
    87 schema:sdDatePublished 2019-04-11T11:56
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N65674a6e8caf4d7b9452885d31826cd4
    90 schema:url https://link.springer.com/10.1186%2Fs12711-018-0444-4
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N1a2455445f824d0aa6114bae2cbe8fbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Male
    96 rdf:type schema:DefinedTerm
    97 N2461b67bd0bc4b68bdf8c5c3d17d9419 schema:name doi
    98 schema:value 10.1186/s12711-018-0444-4
    99 rdf:type schema:PropertyValue
    100 N2a33c991c72f49a9bf4c075570ce6ad8 schema:name dimensions_id
    101 schema:value pub.1111954465
    102 rdf:type schema:PropertyValue
    103 N34e6840fc02c4b10a5be0dd84125e02e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Aging
    105 rdf:type schema:DefinedTerm
    106 N3eeb7de8864f4e64b4b60f8a62baba06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Cattle
    108 rdf:type schema:DefinedTerm
    109 N422b890c5d28475494010300e68e00a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Body Weight
    111 rdf:type schema:DefinedTerm
    112 N4bf4a7c9cf1c422cb7859381a5848fb3 rdf:first Ne8e57874cb8e4aa39be7279c7f8094e2
    113 rdf:rest rdf:nil
    114 N4ec45e790347474fa027c7059d7711f9 schema:name nlm_unique_id
    115 schema:value 9114088
    116 rdf:type schema:PropertyValue
    117 N579e9bc2a3984856a983aea2a25e22df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Troponin T
    119 rdf:type schema:DefinedTerm
    120 N5a65576259e04b9eb6ef47c5e45d640a schema:issueNumber 1
    121 rdf:type schema:PublicationIssue
    122 N64c6c7fe21894ec786f8c176b6dbfb0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Genome-Wide Association Study
    124 rdf:type schema:DefinedTerm
    125 N65674a6e8caf4d7b9452885d31826cd4 schema:name Springer Nature - SN SciGraph project
    126 rdf:type schema:Organization
    127 N66ef1f806264430e97d447ade524f8fa schema:affiliation https://www.grid.ac/institutes/grid.8664.c
    128 schema:familyName Yin
    129 schema:givenName Tong
    130 rdf:type schema:Person
    131 N6922d554c7574740a318a104c1fb3711 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Polymorphism, Single Nucleotide
    133 rdf:type schema:DefinedTerm
    134 N820af8ad58414d87be37f4e3d3c6ded0 schema:name pubmed_id
    135 schema:value 30727969
    136 rdf:type schema:PropertyValue
    137 N8d665a1959864c4b92f00142bfda137f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Fibroblast Growth Factors
    139 rdf:type schema:DefinedTerm
    140 N9791e8a1923f4607afbb074e248167a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Animals
    142 rdf:type schema:DefinedTerm
    143 N9d77eafd759c4f03bab621669b3bdd47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Female
    145 rdf:type schema:DefinedTerm
    146 Nb0bfa4039df14842af155b7b763f7d00 rdf:first N66ef1f806264430e97d447ade524f8fa
    147 rdf:rest N4bf4a7c9cf1c422cb7859381a5848fb3
    148 Nd7b8b5b7d6524807934832bd0d0b52c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Proteoglycans
    150 rdf:type schema:DefinedTerm
    151 Ne54f56b6e9514828958197799355d0c0 schema:volumeNumber 51
    152 rdf:type schema:PublicationVolume
    153 Ne8e57874cb8e4aa39be7279c7f8094e2 schema:affiliation https://www.grid.ac/institutes/grid.8664.c
    154 schema:familyName König
    155 schema:givenName Sven
    156 rdf:type schema:Person
    157 Ne9bde73f66b64c19a15535f73c5010a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Quantitative Trait Loci
    159 rdf:type schema:DefinedTerm
    160 Nf5be3a575f104b67b96861f0bb67415a schema:name readcube_id
    161 schema:value f2aa9b8f5261a6530af19e354295fd43deaba6f9ce2cb1e9e5091ca42fe876b2
    162 rdf:type schema:PropertyValue
    163 Nf7829e73a4be45fc862042d0a871e91f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Extracellular Matrix Proteins
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biological Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Genetics
    171 rdf:type schema:DefinedTerm
    172 sg:journal.1014139 schema:issn 0999-193X
    173 1297-9686
    174 schema:name Genetics Selection Evolution
    175 rdf:type schema:Periodical
    176 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    177 https://doi.org/10.1038/75556
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/ejhg.2011.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051554988
    180 https://doi.org/10.1038/ejhg.2011.39
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/ng.2876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016276818
    183 https://doi.org/10.1038/ng.2876
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/ng.608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015057090
    186 https://doi.org/10.1038/ng.608
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
    189 https://doi.org/10.1038/ng1847
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nmeth.2037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045203738
    192 https://doi.org/10.1038/nmeth.2037
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nrg.2016.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047890909
    195 https://doi.org/10.1038/nrg.2016.132
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nrg2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051461847
    198 https://doi.org/10.1038/nrg2575
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nrg2813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043354004
    201 https://doi.org/10.1038/nrg2813
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/onc.2017.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084860963
    204 https://doi.org/10.1038/onc.2017.80
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1186/1297-9686-41-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004549609
    207 https://doi.org/10.1186/1297-9686-41-55
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1186/1297-9686-42-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043558874
    210 https://doi.org/10.1186/1297-9686-42-22
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/1471-2156-13-44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035195689
    213 https://doi.org/10.1186/1471-2156-13-44
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1471-2156-14-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043066390
    216 https://doi.org/10.1186/1471-2156-14-80
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/s12711-015-0126-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046081408
    219 https://doi.org/10.1186/s12711-015-0126-4
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/s12711-017-0356-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092568220
    222 https://doi.org/10.1186/s12711-017-0356-8
    223 rdf:type schema:CreativeWork
    224 https://app.dimensions.ai/details/publication/pub.1077748021 schema:CreativeWork
    225 https://doi.org/10.1016/j.ajhg.2010.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497006
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.bbrc.2015.05.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005798567
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.critrevonc.2008.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012781058
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.jmb.2005.06.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023098571
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1017/s1751731112001152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042868532
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1093/bioinformatics/btm108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031184798
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1093/nar/gkw1108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034591246
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1111/j.1365-2052.2009.01998.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045809873
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1111/j.1365-2052.2012.02340.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042706799
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1111/j.1439-0388.2009.00831.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228737
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458929
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1371/journal.pcbi.1004219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026087862
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1371/journal.pone.0093017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031862339
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1371/journal.pone.0117468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012594550
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1371/journal.pone.0175971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084956645
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1371/journal.pone.0176474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085101876
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1534/genetics.110.124057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025476327
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1634/stemcells.2006-0494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043565942
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.2527/jas.2006-168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070885681
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.2527/jas.2012-5827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070888686
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.3168/jds.2009-2686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000994999
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.3168/jds.2009-2992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041186874
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.3168/jds.2011-4628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040730668
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.3168/jds.2012-5466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044599164
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.3168/jds.2013-7409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031206151
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.3168/jds.2015-9621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021021838
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.3168/jds.2016-10887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019304066
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.3168/jds.2017-13835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099745642
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.3168/jds.s0022-0302(00)74917-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074617542
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.3168/jds.s0022-0302(03)73809-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075308797
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.3168/jds.s0022-0302(03)73987-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076611950
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.3168/jds.s0022-0302(06)72097-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077162325
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.3168/jds.s0022-0302(07)72646-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077340105
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.5713/ajas.2014.14287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027773221
    294 rdf:type schema:CreativeWork
    295 https://www.grid.ac/institutes/grid.8664.c schema:alternateName University of Giessen
    296 schema:name Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstr. 21b, 35390, Giessen, Germany
    297 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...