The impact of genome editing on the introduction of monogenic traits in livestock View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

John W. M. Bastiaansen, Henk Bovenhuis, Martien A. M. Groenen, Hendrik-Jan Megens, Han A. Mulder

ABSTRACT

BACKGROUND: Genome editing technologies provide new tools for genetic improvement and have the potential to become the next game changer in animal and plant breeding. The aim of this study was to investigate how genome editing in combination with genomic selection can accelerate the introduction of a monogenic trait in a livestock population as compared to genomic selection alone. METHODS: A breeding population was simulated under genomic selection for a polygenic trait. After reaching Bulmer equilibrium, the selection objective was to increase the allele frequency of a monogenic trait, with or without genome editing, in addition to improving the polygenic trait. Scenarios were compared for time to fixation of the desired allele, selection response for the polygenic trait, and level of inbreeding. The costs, in terms of number of editing procedures, were compared to the benefits of having more animals with the desired phenotype of the monogenic trait. Effects of reduced editing efficiency were investigated. RESULTS: In a population of 20,000 selection candidates per generation, the total number of edited zygotes needed to reach fixation of the desired allele was 22,118, 7072, or 3912 with, no, moderate, or high selection emphasis on the monogenic trait, respectively. Genome editing resulted in up to four-fold faster fixation of the desired allele when efficiency was 100%, while the loss in long-term selection response for the polygenic trait was up to seven-fold less compared to genomic selection alone. With moderate selection emphasis on the monogenic trait, introduction of genome editing led to a four-fold reduction in the total number of animals showing the undesired phenotype before fixation. However, with a currently realistic editing efficiency of 4%, the number of required editing procedures increased by 72% and loss in selection response increased eight-fold compared to 100% efficiency. With low efficiency, loss in selection response was 29% more compared to genomic selection alone. CONCLUSIONS: Genome editing strongly decreased the time to fixation for a desired allele compared to genomic selection alone. Reduced editing efficiency had a major impact on the number of editing procedures and on the loss in selection response. In addition to ethical and welfare considerations of genome editing, a careful assessment of its technical costs and benefits is required. More... »

PAGES

18

References to SciGraph publications

  • 2014-06. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype in NATURE BIOTECHNOLOGY
  • 2015-02. Genome edited sheep and cattle in TRANSGENIC RESEARCH
  • 2016-04. Mammalian interspecies substitution of immune modulatory alleles by genome editing in SCIENTIFIC REPORTS
  • 2016-05. Production of hornless dairy cattle from genome-edited cell lines in NATURE BIOTECHNOLOGY
  • 2016-06. Gene targeting, genome editing: from Dolly to editors in TRANSGENIC RESEARCH
  • 2015-11-23. Salmon approval heralds rethink of transgenic animals in NATURE
  • 2005-08. Genomic contributions in livestock gene introgression programmes in GENETICS SELECTION EVOLUTION
  • 2000-11. A DNA polymorphism influencing α(1,2)fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion in IMMUNOGENETICS
  • 2013-05-01. Transgenic salmon nears approval in NATURE
  • 2016-01. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus in NATURE BIOTECHNOLOGY
  • 2016-12. Evaluation of breeding strategies for polledness in dairy cattle using a newly developed simulation framework for quantitative and Mendelian traits in GENETICS SELECTION EVOLUTION
  • 2015-12. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs in GENETICS SELECTION EVOLUTION
  • 2015-12. Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12711-018-0389-7

    DOI

    http://dx.doi.org/10.1186/s12711-018-0389-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103383741

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29661133


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breeding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cattle", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Editing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Frequency", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Inbreeding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Livestock", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bastiaansen", 
            "givenName": "John W. M.", 
            "id": "sg:person.01202732402.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202732402.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bovenhuis", 
            "givenName": "Henk", 
            "id": "sg:person.01145703356.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145703356.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Groenen", 
            "givenName": "Martien A. M.", 
            "id": "sg:person.014427251417.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014427251417.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Megens", 
            "givenName": "Hendrik-Jan", 
            "id": "sg:person.01324213132.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324213132.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mulder", 
            "givenName": "Han A.", 
            "id": "sg:person.01370117652.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370117652.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/febs.13760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003660030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/biot.201400193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007705806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jbg.12206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007793332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11248-014-9832-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010689387", 
              "https://doi.org/10.1007/s11248-014-9832-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11248-014-9832-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010689387", 
              "https://doi.org/10.1007/s11248-014-9832-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.livsci.2015.05.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010904634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011531387", 
              "https://doi.org/10.1038/nbt.2884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rstb.2005.1670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012294088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/febs.13586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017238847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017963749", 
              "https://doi.org/10.1038/nbt.3560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018234613", 
              "https://doi.org/10.1038/nbt.3434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep21645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019187830", 
              "https://doi.org/10.1038/srep21645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-37-4-291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020238127", 
              "https://doi.org/10.1186/1297-9686-37-4-291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibtech.2016.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023007006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.livsci.2015.05.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024103546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1310478110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024166100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025072851", 
              "https://doi.org/10.1038/srep11735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11248-016-9932-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029789296", 
              "https://doi.org/10.1007/s11248-016-9932-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11248-016-9932-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029789296", 
              "https://doi.org/10.1007/s11248-016-9932-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/527417a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030277278", 
              "https://doi.org/10.1038/527417a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0135-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030781530", 
              "https://doi.org/10.1186/s12711-015-0135-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0135-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030781530", 
              "https://doi.org/10.1186/s12711-015-0135-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/pcp/pcu170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031964691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jvi.00331-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036410139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bies.201670903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041386855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.098160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041833306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.098160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041833306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-016-0228-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041983747", 
              "https://doi.org/10.1186/s12711-016-0228-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-016-0228-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041983747", 
              "https://doi.org/10.1186/s12711-016-0228-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2016.00703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045543057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.livsci.2015.05.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046596948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002510000263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048379674", 
              "https://doi.org/10.1007/s002510000263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051654714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/497017a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053342920", 
              "https://doi.org/10.1038/497017a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672310000145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053829906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672306008421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053844819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672398003267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053872257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672304007050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053980681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/282718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058592841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083023530", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2016.0956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083994622"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: Genome editing technologies provide new tools for genetic improvement and have the potential to become the next game changer in animal and plant breeding. The aim of this study was to investigate how genome editing in combination with genomic selection can accelerate the introduction of a monogenic trait in a livestock population as compared to genomic selection alone.\nMETHODS: A breeding population was simulated under genomic selection for a polygenic trait. After reaching Bulmer equilibrium, the selection objective was to increase the allele frequency of a monogenic trait, with or without genome editing, in addition to improving the polygenic trait. Scenarios were compared for time to fixation of the desired allele, selection response for the polygenic trait, and level of inbreeding. The costs, in terms of number of editing procedures, were compared to the benefits of having more animals with the desired phenotype of the monogenic trait. Effects of reduced editing efficiency were investigated.\nRESULTS: In a population of 20,000 selection candidates per generation, the total number of edited zygotes needed to reach fixation of the desired allele was 22,118, 7072, or 3912 with, no, moderate, or high selection emphasis on the monogenic trait, respectively. Genome editing resulted in up to four-fold faster fixation of the desired allele when efficiency was 100%, while the loss in long-term selection response for the polygenic trait was up to seven-fold less compared to genomic selection alone. With moderate selection emphasis on the monogenic trait, introduction of genome editing led to a four-fold reduction in the total number of animals showing the undesired phenotype before fixation. However, with a currently realistic editing efficiency of 4%, the number of required editing procedures increased by 72% and loss in selection response increased eight-fold compared to 100% efficiency. With low efficiency, loss in selection response was 29% more compared to genomic selection alone.\nCONCLUSIONS: Genome editing strongly decreased the time to fixation for a desired allele compared to genomic selection alone. Reduced editing efficiency had a major impact on the number of editing procedures and on the loss in selection response. In addition to ethical and welfare considerations of genome editing, a careful assessment of its technical costs and benefits is required.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12711-018-0389-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1014139", 
            "issn": [
              "0999-193X", 
              "1297-9686"
            ], 
            "name": "Genetics Selection Evolution", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "50"
          }
        ], 
        "name": "The impact of genome editing on the introduction of monogenic traits in livestock", 
        "pagination": "18", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6492141d1dc7801695be0645a7b64066950334e5f07e787439a61c61619a2124"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29661133"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114088"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12711-018-0389-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103383741"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12711-018-0389-7", 
          "https://app.dimensions.ai/details/publication/pub.1103383741"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12711-018-0389-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12711-018-0389-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12711-018-0389-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12711-018-0389-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12711-018-0389-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    261 TRIPLES      21 PREDICATES      76 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12711-018-0389-7 schema:about N3fcf659b627643eb8ca2d90bf85c928e
    2 N5a5f754417b24e2cb1bdd7a8e2fcf8d8
    3 N8b93855dd30e496ea58da4fcebc4e0b7
    4 Nab8ed964401d493095bb63e929c82b57
    5 Nad614e59a38a4246bea5849d4e4da1ca
    6 Nc4c3756255a741b7b67ecfe031b16527
    7 Nc7697224d80c471f84743f071ce7d75f
    8 Nc93583365e06448aa1d6e3961fa0e911
    9 Nd6ea652bf3a44a41b0241f6afc3ab82c
    10 Ne894ceec35ee4cf986af100b455d765f
    11 Nfa03fea389974219991f223e4351762c
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N2646c7125c82488fbdc0447b7d6e9198
    15 schema:citation sg:pub.10.1007/s002510000263
    16 sg:pub.10.1007/s11248-014-9832-x
    17 sg:pub.10.1007/s11248-016-9932-x
    18 sg:pub.10.1038/497017a
    19 sg:pub.10.1038/527417a
    20 sg:pub.10.1038/nbt.2884
    21 sg:pub.10.1038/nbt.3434
    22 sg:pub.10.1038/nbt.3560
    23 sg:pub.10.1038/srep11735
    24 sg:pub.10.1038/srep21645
    25 sg:pub.10.1186/1297-9686-37-4-291
    26 sg:pub.10.1186/s12711-015-0135-3
    27 sg:pub.10.1186/s12711-016-0228-7
    28 https://app.dimensions.ai/details/publication/pub.1083023530
    29 https://doi.org/10.1002/bies.201670903
    30 https://doi.org/10.1002/biot.201400193
    31 https://doi.org/10.1016/j.livsci.2015.05.017
    32 https://doi.org/10.1016/j.livsci.2015.05.020
    33 https://doi.org/10.1016/j.livsci.2015.05.021
    34 https://doi.org/10.1016/j.tibtech.2016.03.007
    35 https://doi.org/10.1017/s0016672304007050
    36 https://doi.org/10.1017/s0016672306008421
    37 https://doi.org/10.1017/s0016672310000145
    38 https://doi.org/10.1017/s0016672398003267
    39 https://doi.org/10.1073/pnas.1310478110
    40 https://doi.org/10.1086/282718
    41 https://doi.org/10.1093/nar/gks1150
    42 https://doi.org/10.1093/pcp/pcu170
    43 https://doi.org/10.1098/rstb.2005.1670
    44 https://doi.org/10.1111/febs.13586
    45 https://doi.org/10.1111/febs.13760
    46 https://doi.org/10.1111/jbg.12206
    47 https://doi.org/10.1128/jvi.00331-11
    48 https://doi.org/10.1534/genetics.108.098160
    49 https://doi.org/10.2527/jas.2016.0956
    50 https://doi.org/10.3389/fpls.2016.00703
    51 schema:datePublished 2018-12
    52 schema:datePublishedReg 2018-12-01
    53 schema:description BACKGROUND: Genome editing technologies provide new tools for genetic improvement and have the potential to become the next game changer in animal and plant breeding. The aim of this study was to investigate how genome editing in combination with genomic selection can accelerate the introduction of a monogenic trait in a livestock population as compared to genomic selection alone. METHODS: A breeding population was simulated under genomic selection for a polygenic trait. After reaching Bulmer equilibrium, the selection objective was to increase the allele frequency of a monogenic trait, with or without genome editing, in addition to improving the polygenic trait. Scenarios were compared for time to fixation of the desired allele, selection response for the polygenic trait, and level of inbreeding. The costs, in terms of number of editing procedures, were compared to the benefits of having more animals with the desired phenotype of the monogenic trait. Effects of reduced editing efficiency were investigated. RESULTS: In a population of 20,000 selection candidates per generation, the total number of edited zygotes needed to reach fixation of the desired allele was 22,118, 7072, or 3912 with, no, moderate, or high selection emphasis on the monogenic trait, respectively. Genome editing resulted in up to four-fold faster fixation of the desired allele when efficiency was 100%, while the loss in long-term selection response for the polygenic trait was up to seven-fold less compared to genomic selection alone. With moderate selection emphasis on the monogenic trait, introduction of genome editing led to a four-fold reduction in the total number of animals showing the undesired phenotype before fixation. However, with a currently realistic editing efficiency of 4%, the number of required editing procedures increased by 72% and loss in selection response increased eight-fold compared to 100% efficiency. With low efficiency, loss in selection response was 29% more compared to genomic selection alone. CONCLUSIONS: Genome editing strongly decreased the time to fixation for a desired allele compared to genomic selection alone. Reduced editing efficiency had a major impact on the number of editing procedures and on the loss in selection response. In addition to ethical and welfare considerations of genome editing, a careful assessment of its technical costs and benefits is required.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree true
    57 schema:isPartOf N5e93f470fd8747e3ac4d6abaf45bb11a
    58 N8284f48351cb4417870971d598a1753c
    59 sg:journal.1014139
    60 schema:name The impact of genome editing on the introduction of monogenic traits in livestock
    61 schema:pagination 18
    62 schema:productId N06fcf328856d408398661ff5e785d71f
    63 N8c55893476b745c7a7e5d2ca7a24414d
    64 Nd7719bb71eb4497798be45bd4b92dd7b
    65 Ne1eb7fe7557c487380078e8aa8231a50
    66 Nf2ed3ce1123d434da93a4ee16c95386b
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103383741
    68 https://doi.org/10.1186/s12711-018-0389-7
    69 schema:sdDatePublished 2019-04-11T09:54
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N97723da835fb48f2a6005b4ebdce53dd
    72 schema:url https://link.springer.com/10.1186%2Fs12711-018-0389-7
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N00216f80255f45988311556fadb552fe rdf:first sg:person.01370117652.69
    77 rdf:rest rdf:nil
    78 N06fcf328856d408398661ff5e785d71f schema:name pubmed_id
    79 schema:value 29661133
    80 rdf:type schema:PropertyValue
    81 N0df72c13ebbd471ca0c48c7263ad033f rdf:first sg:person.01145703356.63
    82 rdf:rest Nc38ce5c6127a4890b12c101a0fc177c6
    83 N2646c7125c82488fbdc0447b7d6e9198 rdf:first sg:person.01202732402.59
    84 rdf:rest N0df72c13ebbd471ca0c48c7263ad033f
    85 N3fcf659b627643eb8ca2d90bf85c928e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Breeding
    87 rdf:type schema:DefinedTerm
    88 N5a5f754417b24e2cb1bdd7a8e2fcf8d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Cattle
    90 rdf:type schema:DefinedTerm
    91 N5e93f470fd8747e3ac4d6abaf45bb11a schema:volumeNumber 50
    92 rdf:type schema:PublicationVolume
    93 N8284f48351cb4417870971d598a1753c schema:issueNumber 1
    94 rdf:type schema:PublicationIssue
    95 N8b93855dd30e496ea58da4fcebc4e0b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Quantitative Trait Loci
    97 rdf:type schema:DefinedTerm
    98 N8c55893476b745c7a7e5d2ca7a24414d schema:name doi
    99 schema:value 10.1186/s12711-018-0389-7
    100 rdf:type schema:PropertyValue
    101 N97723da835fb48f2a6005b4ebdce53dd schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 Nab8ed964401d493095bb63e929c82b57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Inbreeding
    105 rdf:type schema:DefinedTerm
    106 Nad614e59a38a4246bea5849d4e4da1ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Male
    108 rdf:type schema:DefinedTerm
    109 Nc38ce5c6127a4890b12c101a0fc177c6 rdf:first sg:person.014427251417.13
    110 rdf:rest Ne3dd31c9a6394b10b0abe9b852941bec
    111 Nc4c3756255a741b7b67ecfe031b16527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Gene Frequency
    113 rdf:type schema:DefinedTerm
    114 Nc7697224d80c471f84743f071ce7d75f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Livestock
    116 rdf:type schema:DefinedTerm
    117 Nc93583365e06448aa1d6e3961fa0e911 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Female
    119 rdf:type schema:DefinedTerm
    120 Nd6ea652bf3a44a41b0241f6afc3ab82c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Selection, Genetic
    122 rdf:type schema:DefinedTerm
    123 Nd7719bb71eb4497798be45bd4b92dd7b schema:name nlm_unique_id
    124 schema:value 9114088
    125 rdf:type schema:PropertyValue
    126 Ne1eb7fe7557c487380078e8aa8231a50 schema:name dimensions_id
    127 schema:value pub.1103383741
    128 rdf:type schema:PropertyValue
    129 Ne3dd31c9a6394b10b0abe9b852941bec rdf:first sg:person.01324213132.08
    130 rdf:rest N00216f80255f45988311556fadb552fe
    131 Ne894ceec35ee4cf986af100b455d765f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Animals
    133 rdf:type schema:DefinedTerm
    134 Nf2ed3ce1123d434da93a4ee16c95386b schema:name readcube_id
    135 schema:value 6492141d1dc7801695be0645a7b64066950334e5f07e787439a61c61619a2124
    136 rdf:type schema:PropertyValue
    137 Nfa03fea389974219991f223e4351762c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Gene Editing
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Biological Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Genetics
    145 rdf:type schema:DefinedTerm
    146 sg:journal.1014139 schema:issn 0999-193X
    147 1297-9686
    148 schema:name Genetics Selection Evolution
    149 rdf:type schema:Periodical
    150 sg:person.01145703356.63 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    151 schema:familyName Bovenhuis
    152 schema:givenName Henk
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145703356.63
    154 rdf:type schema:Person
    155 sg:person.01202732402.59 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    156 schema:familyName Bastiaansen
    157 schema:givenName John W. M.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202732402.59
    159 rdf:type schema:Person
    160 sg:person.01324213132.08 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    161 schema:familyName Megens
    162 schema:givenName Hendrik-Jan
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324213132.08
    164 rdf:type schema:Person
    165 sg:person.01370117652.69 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    166 schema:familyName Mulder
    167 schema:givenName Han A.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370117652.69
    169 rdf:type schema:Person
    170 sg:person.014427251417.13 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    171 schema:familyName Groenen
    172 schema:givenName Martien A. M.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014427251417.13
    174 rdf:type schema:Person
    175 sg:pub.10.1007/s002510000263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048379674
    176 https://doi.org/10.1007/s002510000263
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s11248-014-9832-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010689387
    179 https://doi.org/10.1007/s11248-014-9832-x
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s11248-016-9932-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029789296
    182 https://doi.org/10.1007/s11248-016-9932-x
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/497017a schema:sameAs https://app.dimensions.ai/details/publication/pub.1053342920
    185 https://doi.org/10.1038/497017a
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/527417a schema:sameAs https://app.dimensions.ai/details/publication/pub.1030277278
    188 https://doi.org/10.1038/527417a
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nbt.2884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011531387
    191 https://doi.org/10.1038/nbt.2884
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nbt.3434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018234613
    194 https://doi.org/10.1038/nbt.3434
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nbt.3560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017963749
    197 https://doi.org/10.1038/nbt.3560
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/srep11735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025072851
    200 https://doi.org/10.1038/srep11735
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/srep21645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019187830
    203 https://doi.org/10.1038/srep21645
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/1297-9686-37-4-291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020238127
    206 https://doi.org/10.1186/1297-9686-37-4-291
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/s12711-015-0135-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030781530
    209 https://doi.org/10.1186/s12711-015-0135-3
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/s12711-016-0228-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041983747
    212 https://doi.org/10.1186/s12711-016-0228-7
    213 rdf:type schema:CreativeWork
    214 https://app.dimensions.ai/details/publication/pub.1083023530 schema:CreativeWork
    215 https://doi.org/10.1002/bies.201670903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041386855
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1002/biot.201400193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007705806
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/j.livsci.2015.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046596948
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/j.livsci.2015.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024103546
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/j.livsci.2015.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010904634
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/j.tibtech.2016.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023007006
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1017/s0016672304007050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053980681
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1017/s0016672306008421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053844819
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1017/s0016672310000145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053829906
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1017/s0016672398003267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053872257
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1073/pnas.1310478110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024166100
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1086/282718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058592841
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1093/nar/gks1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051654714
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/pcp/pcu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031964691
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1098/rstb.2005.1670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012294088
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1111/febs.13586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017238847
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1111/febs.13760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003660030
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1111/jbg.12206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007793332
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1128/jvi.00331-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036410139
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1534/genetics.108.098160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041833306
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.2527/jas.2016.0956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083994622
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.3389/fpls.2016.00703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045543057
    258 rdf:type schema:CreativeWork
    259 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
    260 schema:name Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, The Netherlands
    261 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...