Influence of epistasis on response to genomic selection using complete sequence data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Natalia S. Forneris, Zulma G. Vitezica, Andres Legarra, Miguel Pérez-Enciso

ABSTRACT

BACKGROUND: The effect of epistasis on response to selection is a highly debated topic. Here, we investigated the impact of epistasis on response to sequence-based selection via genomic best linear prediction (GBLUP) in a regime of strong non-symmetrical epistasis under divergent selection, using real Drosophila sequence data. We also explored the possible advantage of including epistasis in the evaluation model and/or of knowing the causal mutations. RESULTS: Response to selection was almost exclusively due to changes in allele frequency at a few loci with a large effect. Response was highly asymmetric (about four phenotypic standard deviations higher for upward than downward selection) due to the highly skewed site frequency spectrum. Epistasis accentuated this asymmetry and affected response to selection by modulating the additive genetic variance, which was sustained for longer under upward selection whereas it eroded rapidly under downward selection. Response to selection was quite insensitive to the evaluation model, especially under an additive scenario. Nevertheless, including epistasis in the model when there was none eventually led to lower accuracies as selection proceeded. Accounting for epistasis in the model, if it existed, was beneficial but only in the medium term. There was not much gain in response if causal mutations were known, compared to using sequence data, which is likely due to strong linkage disequilibrium, high heritability and availability of phenotypes on candidates. CONCLUSIONS: Epistatic interactions affect the response to genomic selection by modulating the additive genetic variance used for selection. Epistasis releases additive variance that may increase response to selection compared to a pure additive genetic action. Furthermore, genomic evaluation models and, in particular, GBLUP are robust, i.e. adding complexity to the model did not modify substantially the response (for a given architecture). More... »

PAGES

66

References to SciGraph publications

  • 2012-11. Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations in HEREDITY
  • 2017-01. How does epistasis influence the response to selection? in HEREDITY
  • 2015-12. Sequence- vs. chip-assisted genomic selection: accurate biological information is advised in GENETICS SELECTION EVOLUTION
  • 2015-12. Data-driven encoding for quantitative genetic trait prediction in BMC BIOINFORMATICS
  • 2016-12. Efficient genomic prediction based on whole-genome sequence data using split-and-merge Bayesian variable selection in GENETICS SELECTION EVOLUTION
  • 2011-12. Genomic value prediction for quantitative traits under the epistatic model in BMC GENETICS
  • 2010-03. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks in NATURE GENETICS
  • 2011-12. Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers in BMC GENETICS
  • 2017-12. Selecting sequence variants to improve genomic predictions for dairy cattle in GENETICS SELECTION EVOLUTION
  • 1997-09. Estimating heritability in a threshold trait: heat-shock tolerance in Drosophila buzzatii in HEREDITY
  • 2012-02. The Drosophila melanogaster Genetic Reference Panel in NATURE
  • 2015-12. Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle in GENETICS SELECTION EVOLUTION
  • 2014-01. Epistasis and quantitative traits: using model organisms to study gene–gene interactions in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12711-017-0340-3

    DOI

    http://dx.doi.org/10.1186/s12711-017-0340-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091355856

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28841821


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epistasis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Buenos Aires", 
              "id": "https://www.grid.ac/institutes/grid.7345.5", 
              "name": [
                "Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Barcelona, Spain", 
                "Departamento de Producci\u00f3n Animal, Facultad de Agronom\u00eda, Universidad de Buenos Aires, C1417DSE, Buenos Aires, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Forneris", 
            "givenName": "Natalia S.", 
            "id": "sg:person.01103176776.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103176776.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "GenPhySE, INRA, INPT, ENVT, Universit\u00e9 de Toulouse, 31326, Castanet-Tolosan, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vitezica", 
            "givenName": "Zulma G.", 
            "id": "sg:person.01075171654.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075171654.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "GenPhySE, INRA, INPT, ENVT, Universit\u00e9 de Toulouse, 31326, Castanet-Tolosan, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Legarra", 
            "givenName": "Andres", 
            "id": "sg:person.01223466241.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223466241.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
              "id": "https://www.grid.ac/institutes/grid.425902.8", 
              "name": [
                "Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Barcelona, Spain", 
                "Departament de Ci\u00e8ncia Animal i dels Aliments, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Barcelona, Spain", 
                "ICREA, Passeig de Llu\u00eds Companys 23, 08010, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "P\u00e9rez-Enciso", 
            "givenName": "Miguel", 
            "id": "sg:person.01041433710.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1534/genetics.113.155176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004235779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.155176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004235779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0149-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005286567", 
              "https://doi.org/10.1186/s12711-015-0149-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1997.152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006473014", 
              "https://doi.org/10.1038/hdy.1997.152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1997.152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006473014", 
              "https://doi.org/10.1038/hdy.1997.152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0126880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006576698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-5809(88)90004-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006971561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-12-15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008703170", 
              "https://doi.org/10.1186/1471-2156-12-15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1177011137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009965252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-016-0225-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010119822", 
              "https://doi.org/10.1186/s12711-016-0225-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-016-0225-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010119822", 
              "https://doi.org/10.1186/s12711-016-0225-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jbg.12199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014402131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2016.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016284928", 
              "https://doi.org/10.1038/hdy.2016.109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672310000285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018728175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/519795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.165282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021238823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.165282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021238823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0117-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022714551", 
              "https://doi.org/10.1186/s12711-015-0117-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0117-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022714551", 
              "https://doi.org/10.1186/s12711-015-0117-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.150029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025094141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.150029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025094141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025596426", 
              "https://doi.org/10.1038/nrg3627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027320503", 
              "https://doi.org/10.1038/nature10811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.164442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029083888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.164442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029083888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtherbio.2016.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031734815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtherbio.2016.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031734815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtherbio.2016.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031734815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470650240.ch9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032846089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033073051", 
              "https://doi.org/10.1038/ng.524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033073051", 
              "https://doi.org/10.1038/ng.524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-12-74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037713751", 
              "https://doi.org/10.1186/1471-2156-12-74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037949611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1518830113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038987681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0501986102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041220196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2012.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044404004", 
              "https://doi.org/10.1038/hdy.2012.44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0020154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044494275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.032573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045348199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.032573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045348199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-16-s1-s10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049624986", 
              "https://doi.org/10.1186/1471-2105-16-s1-s10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0045293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051555687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.116590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052325582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.116590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052325582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672300028858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053826621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672300028858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053826621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/282718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058592841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/339273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058638181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.177220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.177220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.194878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.194878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.194878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas1985.601111x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070900982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2007-0980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077799697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082499364", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083023534", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-017-0307-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084249885", 
              "https://doi.org/10.1186/s12711-017-0307-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-017-0307-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084249885", 
              "https://doi.org/10.1186/s12711-017-0307-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.199406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085471760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.199406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085471760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.199406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085471760"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: The effect of epistasis on response to selection is a highly debated topic. Here, we investigated the impact of epistasis on response to sequence-based selection via genomic best linear prediction (GBLUP) in a regime of strong non-symmetrical epistasis under divergent selection, using real Drosophila sequence data. We also explored the possible advantage of including epistasis in the evaluation model and/or of knowing the causal mutations.\nRESULTS: Response to selection was almost exclusively due to changes in allele frequency at a few loci with a large effect. Response was highly asymmetric (about four phenotypic standard deviations higher for upward than downward selection) due to the highly skewed site frequency spectrum. Epistasis accentuated this asymmetry and affected response to selection by modulating the additive genetic variance, which was sustained for longer under upward selection whereas it eroded rapidly under downward selection. Response to selection was quite insensitive to the evaluation model, especially under an additive scenario. Nevertheless, including epistasis in the model when there was none eventually led to lower accuracies as selection proceeded. Accounting for epistasis in the model, if it existed, was beneficial but only in the medium term. There was not much gain in response if causal mutations were known, compared to using sequence data, which is likely due to strong linkage disequilibrium, high heritability and availability of phenotypes on candidates.\nCONCLUSIONS: Epistatic interactions affect the response to genomic selection by modulating the additive genetic variance used for selection. Epistasis releases additive variance that may increase response to selection compared to a pure additive genetic action. Furthermore, genomic evaluation models and, in particular, GBLUP are robust, i.e. adding complexity to the model did not modify substantially the response (for a given architecture).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12711-017-0340-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1014139", 
            "issn": [
              "0999-193X", 
              "1297-9686"
            ], 
            "name": "Genetics Selection Evolution", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "name": "Influence of epistasis on response to genomic selection using complete sequence data", 
        "pagination": "66", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f6f8698ea28d0cd4c368fd9582c378ef5ac95011b941aab28762a73aa353f7cb"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28841821"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114088"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12711-017-0340-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091355856"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12711-017-0340-3", 
          "https://app.dimensions.ai/details/publication/pub.1091355856"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54331_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12711-017-0340-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12711-017-0340-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12711-017-0340-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12711-017-0340-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12711-017-0340-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    265 TRIPLES      21 PREDICATES      78 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12711-017-0340-3 schema:about N035be0bcedf24b818077bf01cb46f2b9
    2 N335b0d65f76644179826f41be3e058a3
    3 Na5df94151f134b71a6bf5deddfd2448b
    4 Nab5fc89c32e5438fa8caa3c9d253bf4a
    5 Nb1cd90613d504e0184f879d6a334a70a
    6 Nbc303997dfb445e59e7c5d144764e66c
    7 Ne3b73aa20779449b8a2d00c4a3cd25d8
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 schema:author N069ccfccecd447529f3cba8475037323
    11 schema:citation sg:pub.10.1038/hdy.1997.152
    12 sg:pub.10.1038/hdy.2012.44
    13 sg:pub.10.1038/hdy.2016.109
    14 sg:pub.10.1038/nature10811
    15 sg:pub.10.1038/ng.524
    16 sg:pub.10.1038/nrg3627
    17 sg:pub.10.1186/1471-2105-16-s1-s10
    18 sg:pub.10.1186/1471-2156-12-15
    19 sg:pub.10.1186/1471-2156-12-74
    20 sg:pub.10.1186/s12711-015-0117-5
    21 sg:pub.10.1186/s12711-015-0149-x
    22 sg:pub.10.1186/s12711-016-0225-x
    23 sg:pub.10.1186/s12711-017-0307-4
    24 https://app.dimensions.ai/details/publication/pub.1082499364
    25 https://app.dimensions.ai/details/publication/pub.1083023534
    26 https://doi.org/10.1002/9780470650240.ch9
    27 https://doi.org/10.1016/0040-5809(88)90004-4
    28 https://doi.org/10.1016/j.jtherbio.2016.04.004
    29 https://doi.org/10.1017/s0016672300028858
    30 https://doi.org/10.1017/s0016672310000285
    31 https://doi.org/10.1073/pnas.0501986102
    32 https://doi.org/10.1073/pnas.1518830113
    33 https://doi.org/10.1086/282718
    34 https://doi.org/10.1086/339273
    35 https://doi.org/10.1086/519795
    36 https://doi.org/10.1111/jbg.12199
    37 https://doi.org/10.1214/ss/1177011137
    38 https://doi.org/10.1371/journal.pgen.0020154
    39 https://doi.org/10.1371/journal.pgen.1000008
    40 https://doi.org/10.1371/journal.pone.0045293
    41 https://doi.org/10.1371/journal.pone.0126880
    42 https://doi.org/10.1534/genetics.104.032573
    43 https://doi.org/10.1534/genetics.110.116590
    44 https://doi.org/10.1534/genetics.113.150029
    45 https://doi.org/10.1534/genetics.113.155176
    46 https://doi.org/10.1534/genetics.114.164442
    47 https://doi.org/10.1534/genetics.114.165282
    48 https://doi.org/10.1534/genetics.115.177220
    49 https://doi.org/10.1534/genetics.116.194878
    50 https://doi.org/10.1534/genetics.116.199406
    51 https://doi.org/10.2527/jas1985.601111x
    52 https://doi.org/10.3168/jds.2007-0980
    53 schema:datePublished 2017-12
    54 schema:datePublishedReg 2017-12-01
    55 schema:description BACKGROUND: The effect of epistasis on response to selection is a highly debated topic. Here, we investigated the impact of epistasis on response to sequence-based selection via genomic best linear prediction (GBLUP) in a regime of strong non-symmetrical epistasis under divergent selection, using real Drosophila sequence data. We also explored the possible advantage of including epistasis in the evaluation model and/or of knowing the causal mutations. RESULTS: Response to selection was almost exclusively due to changes in allele frequency at a few loci with a large effect. Response was highly asymmetric (about four phenotypic standard deviations higher for upward than downward selection) due to the highly skewed site frequency spectrum. Epistasis accentuated this asymmetry and affected response to selection by modulating the additive genetic variance, which was sustained for longer under upward selection whereas it eroded rapidly under downward selection. Response to selection was quite insensitive to the evaluation model, especially under an additive scenario. Nevertheless, including epistasis in the model when there was none eventually led to lower accuracies as selection proceeded. Accounting for epistasis in the model, if it existed, was beneficial but only in the medium term. There was not much gain in response if causal mutations were known, compared to using sequence data, which is likely due to strong linkage disequilibrium, high heritability and availability of phenotypes on candidates. CONCLUSIONS: Epistatic interactions affect the response to genomic selection by modulating the additive genetic variance used for selection. Epistasis releases additive variance that may increase response to selection compared to a pure additive genetic action. Furthermore, genomic evaluation models and, in particular, GBLUP are robust, i.e. adding complexity to the model did not modify substantially the response (for a given architecture).
    56 schema:genre research_article
    57 schema:inLanguage en
    58 schema:isAccessibleForFree true
    59 schema:isPartOf N5b25cdfbd53543428a557405ee919572
    60 Nc6999ff9927a4a62ac443de2afe12af5
    61 sg:journal.1014139
    62 schema:name Influence of epistasis on response to genomic selection using complete sequence data
    63 schema:pagination 66
    64 schema:productId N4871c60decab437cb9207d750bf85733
    65 N897e8a3a547c4daa958a613962a5216c
    66 N93a5f6afe3ab4edba21501ffbfb57717
    67 Ne256e09f14784aebb341fa86e8f350de
    68 Nf803afd546984374b88580d81a306e19
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091355856
    70 https://doi.org/10.1186/s12711-017-0340-3
    71 schema:sdDatePublished 2019-04-11T10:20
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher Necd414cf6ccc4477a4c61cf2b54af04e
    74 schema:url https://link.springer.com/10.1186%2Fs12711-017-0340-3
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N035be0bcedf24b818077bf01cb46f2b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Epistasis, Genetic
    80 rdf:type schema:DefinedTerm
    81 N069ccfccecd447529f3cba8475037323 rdf:first sg:person.01103176776.58
    82 rdf:rest N48c01d39af7748cf9e84c00181c7818f
    83 N0da7f443973d40eb9baf39e42730d1df rdf:first sg:person.01041433710.67
    84 rdf:rest rdf:nil
    85 N1801f5968681439aaad7554901d20e0d schema:name GenPhySE, INRA, INPT, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
    86 rdf:type schema:Organization
    87 N335b0d65f76644179826f41be3e058a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Databases, Genetic
    89 rdf:type schema:DefinedTerm
    90 N3cb5c12b44db4c9e896e00f33fb3f259 schema:name GenPhySE, INRA, INPT, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
    91 rdf:type schema:Organization
    92 N4871c60decab437cb9207d750bf85733 schema:name doi
    93 schema:value 10.1186/s12711-017-0340-3
    94 rdf:type schema:PropertyValue
    95 N48c01d39af7748cf9e84c00181c7818f rdf:first sg:person.01075171654.65
    96 rdf:rest N7a91f1ccea344e5fa93373c285dfae30
    97 N5b25cdfbd53543428a557405ee919572 schema:volumeNumber 49
    98 rdf:type schema:PublicationVolume
    99 N7a91f1ccea344e5fa93373c285dfae30 rdf:first sg:person.01223466241.87
    100 rdf:rest N0da7f443973d40eb9baf39e42730d1df
    101 N897e8a3a547c4daa958a613962a5216c schema:name readcube_id
    102 schema:value f6f8698ea28d0cd4c368fd9582c378ef5ac95011b941aab28762a73aa353f7cb
    103 rdf:type schema:PropertyValue
    104 N93a5f6afe3ab4edba21501ffbfb57717 schema:name nlm_unique_id
    105 schema:value 9114088
    106 rdf:type schema:PropertyValue
    107 Na5df94151f134b71a6bf5deddfd2448b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Genome
    109 rdf:type schema:DefinedTerm
    110 Nab5fc89c32e5438fa8caa3c9d253bf4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Drosophila
    112 rdf:type schema:DefinedTerm
    113 Nb1cd90613d504e0184f879d6a334a70a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Animals
    115 rdf:type schema:DefinedTerm
    116 Nbc303997dfb445e59e7c5d144764e66c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Selection, Genetic
    118 rdf:type schema:DefinedTerm
    119 Nc6999ff9927a4a62ac443de2afe12af5 schema:issueNumber 1
    120 rdf:type schema:PublicationIssue
    121 Ne256e09f14784aebb341fa86e8f350de schema:name dimensions_id
    122 schema:value pub.1091355856
    123 rdf:type schema:PropertyValue
    124 Ne3b73aa20779449b8a2d00c4a3cd25d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Models, Genetic
    126 rdf:type schema:DefinedTerm
    127 Necd414cf6ccc4477a4c61cf2b54af04e schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 Nf803afd546984374b88580d81a306e19 schema:name pubmed_id
    130 schema:value 28841821
    131 rdf:type schema:PropertyValue
    132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Biological Sciences
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Genetics
    137 rdf:type schema:DefinedTerm
    138 sg:journal.1014139 schema:issn 0999-193X
    139 1297-9686
    140 schema:name Genetics Selection Evolution
    141 rdf:type schema:Periodical
    142 sg:person.01041433710.67 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
    143 schema:familyName Pérez-Enciso
    144 schema:givenName Miguel
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67
    146 rdf:type schema:Person
    147 sg:person.01075171654.65 schema:affiliation N3cb5c12b44db4c9e896e00f33fb3f259
    148 schema:familyName Vitezica
    149 schema:givenName Zulma G.
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075171654.65
    151 rdf:type schema:Person
    152 sg:person.01103176776.58 schema:affiliation https://www.grid.ac/institutes/grid.7345.5
    153 schema:familyName Forneris
    154 schema:givenName Natalia S.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103176776.58
    156 rdf:type schema:Person
    157 sg:person.01223466241.87 schema:affiliation N1801f5968681439aaad7554901d20e0d
    158 schema:familyName Legarra
    159 schema:givenName Andres
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223466241.87
    161 rdf:type schema:Person
    162 sg:pub.10.1038/hdy.1997.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006473014
    163 https://doi.org/10.1038/hdy.1997.152
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/hdy.2012.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044404004
    166 https://doi.org/10.1038/hdy.2012.44
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/hdy.2016.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016284928
    169 https://doi.org/10.1038/hdy.2016.109
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nature10811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027320503
    172 https://doi.org/10.1038/nature10811
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/ng.524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033073051
    175 https://doi.org/10.1038/ng.524
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nrg3627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025596426
    178 https://doi.org/10.1038/nrg3627
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1186/1471-2105-16-s1-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624986
    181 https://doi.org/10.1186/1471-2105-16-s1-s10
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1186/1471-2156-12-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008703170
    184 https://doi.org/10.1186/1471-2156-12-15
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1186/1471-2156-12-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037713751
    187 https://doi.org/10.1186/1471-2156-12-74
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1186/s12711-015-0117-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022714551
    190 https://doi.org/10.1186/s12711-015-0117-5
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1186/s12711-015-0149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005286567
    193 https://doi.org/10.1186/s12711-015-0149-x
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1186/s12711-016-0225-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010119822
    196 https://doi.org/10.1186/s12711-016-0225-x
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1186/s12711-017-0307-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084249885
    199 https://doi.org/10.1186/s12711-017-0307-4
    200 rdf:type schema:CreativeWork
    201 https://app.dimensions.ai/details/publication/pub.1082499364 schema:CreativeWork
    202 https://app.dimensions.ai/details/publication/pub.1083023534 schema:CreativeWork
    203 https://doi.org/10.1002/9780470650240.ch9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032846089
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/0040-5809(88)90004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006971561
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.jtherbio.2016.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031734815
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1017/s0016672300028858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053826621
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1017/s0016672310000285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018728175
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1073/pnas.0501986102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041220196
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1073/pnas.1518830113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038987681
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1086/282718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058592841
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1086/339273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058638181
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1111/jbg.12199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014402131
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1214/ss/1177011137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009965252
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1371/journal.pgen.0020154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044494275
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1371/journal.pgen.1000008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037949611
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1371/journal.pone.0045293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051555687
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1371/journal.pone.0126880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006576698
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1534/genetics.104.032573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045348199
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1534/genetics.110.116590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052325582
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1534/genetics.113.150029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025094141
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1534/genetics.113.155176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004235779
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1534/genetics.114.164442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029083888
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1534/genetics.114.165282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021238823
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1534/genetics.115.177220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067739421
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1534/genetics.116.194878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067739754
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1534/genetics.116.199406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085471760
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.2527/jas1985.601111x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070900982
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
    256 rdf:type schema:CreativeWork
    257 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
    258 schema:name Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Barcelona, Spain
    259 Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
    260 ICREA, Passeig de Lluís Companys 23, 08010, Barcelona, Spain
    261 rdf:type schema:Organization
    262 https://www.grid.ac/institutes/grid.7345.5 schema:alternateName University of Buenos Aires
    263 schema:name Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Barcelona, Spain
    264 Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE, Buenos Aires, Argentina
    265 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...