Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Roger L. Vallejo, Timothy D. Leeds, Guangtu Gao, James E. Parsons, Kyle E. Martin, Jason P. Evenhuis, Breno O. Fragomeni, Gregory D. Wiens, Yniv Palti

ABSTRACT

BACKGROUND: Previously, we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative that enables exploitation of within-family genetic variation. METHODS: We compared three GS models [single-step genomic best linear unbiased prediction (ssGBLUP), weighted ssGBLUP (wssGBLUP), and BayesB] to predict genomic-enabled breeding values (GEBV) for BCWD resistance in a commercial rainbow trout population, and compared the accuracy of GEBV to traditional estimates of breeding values (EBV) from a pedigree-based BLUP (P-BLUP) model. We also assessed the impact of sampling design on the accuracy of GEBV predictions. For these comparisons, we used BCWD survival phenotypes recorded on 7893 fish from 102 families, of which 1473 fish from 50 families had genotypes [57 K single nucleotide polymorphism (SNP) array]. Naïve siblings of the training fish (n = 930 testing fish) were genotyped to predict their GEBV and mated to produce 138 progeny testing families. In the following generation, 9968 progeny were phenotyped to empirically assess the accuracy of GEBV predictions made on their non-phenotyped parents. RESULTS: The accuracy of GEBV from all tested GS models were substantially higher than the P-BLUP model EBV. The highest increase in accuracy relative to the P-BLUP model was achieved with BayesB (97.2 to 108.8%), followed by wssGBLUP at iteration 2 (94.4 to 97.1%) and 3 (88.9 to 91.2%) and ssGBLUP (83.3 to 85.3%). Reducing the training sample size to n = ~1000 had no negative impact on the accuracy (0.67 to 0.72), but with n = ~500 the accuracy dropped to 0.53 to 0.61 if the training and testing fish were full-sibs, and even substantially lower, to 0.22 to 0.25, when they were not full-sibs. CONCLUSIONS: Using progeny performance data, we showed that the accuracy of genomic predictions is substantially higher than estimates obtained from the traditional pedigree-based BLUP model for BCWD resistance. Overall, we found that using a much smaller training sample size compared to similar studies in livestock, GS can substantially improve the selection accuracy and genetic gains for this trait in a commercial rainbow trout breeding population. More... »

PAGES

17

References to SciGraph publications

  • 2015-12. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array in BMC GENOMICS
  • 2014-06. Detection of QTL in Rainbow Trout Affecting Survival When Challenged with Flavobacterium psychrophilum in JOURNAL OF MARINE BIOTECHNOLOGY
  • 2008-12. A linkage map of the Atlantic salmon (Salmo salar) based on EST-derived SNP markers in BMC GENOMICS
  • 2013. Bayesian Methods Applied to GWAS in GENOME-WIDE ASSOCIATION STUDIES AND GENOMIC PREDICTION
  • 2013. Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology in GENOME-WIDE ASSOCIATION STUDIES AND GENOMIC PREDICTION
  • 2009-12. Estimates of linkage disequilibrium and effective population size in rainbow trout in BMC GENETICS
  • 2011-12. A common reference population from four European Holstein populations increases reliability of genomic predictions in GENETICS SELECTION EVOLUTION
  • 2010-12. Genomic prediction when some animals are not genotyped in GENETICS SELECTION EVOLUTION
  • 2009-06. Genomic selection: prediction of accuracy and maximisation of long term response in GENETICA
  • 2015-12. Fine mapping of QTL and genomic prediction using allele-specific expression SNPs demonstrates that the complex trait of genetic resistance to Marek’s disease is predominantly determined by transcriptional regulation in BMC GENOMICS
  • 2014-12. Identity-by-descent genomic selection using selective and sparse genotyping in GENETICS SELECTION EVOLUTION
  • 2013-12. A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values in GENETICS SELECTION EVOLUTION
  • 2009-12. Testing strategies for genomic selection in aquaculture breeding programs in GENETICS SELECTION EVOLUTION
  • 2014-12. A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses in GENETICS SELECTION EVOLUTION
  • 2015-12. Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle in GENETICS SELECTION EVOLUTION
  • 2015-12. Response and inbreeding from a genomic selection experiment in layer chickens in GENETICS SELECTION EVOLUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12711-017-0293-6

    DOI

    http://dx.doi.org/10.1186/s12711-017-0293-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083403148

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28148220


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bayes Theorem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breeding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cold Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Resistance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fish Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Markers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oncorhynchus mykiss", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pedigree", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Agricultural Research Service", 
              "id": "https://www.grid.ac/institutes/grid.463419.d", 
              "name": [
                "National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vallejo", 
            "givenName": "Roger L.", 
            "id": "sg:person.01212350635.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212350635.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agricultural Research Service", 
              "id": "https://www.grid.ac/institutes/grid.463419.d", 
              "name": [
                "National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leeds", 
            "givenName": "Timothy D.", 
            "id": "sg:person.0705150407.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705150407.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agricultural Research Service", 
              "id": "https://www.grid.ac/institutes/grid.463419.d", 
              "name": [
                "National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Guangtu", 
            "id": "sg:person.01114464504.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114464504.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Troutlodge (United States)", 
              "id": "https://www.grid.ac/institutes/grid.427329.9", 
              "name": [
                "Troutlodge, Inc., P.O. Box 1290, Sumner, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parsons", 
            "givenName": "James E.", 
            "id": "sg:person.0607407701.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607407701.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Troutlodge (United States)", 
              "id": "https://www.grid.ac/institutes/grid.427329.9", 
              "name": [
                "Troutlodge, Inc., P.O. Box 1290, Sumner, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martin", 
            "givenName": "Kyle E.", 
            "id": "sg:person.01216563062.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216563062.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agricultural Research Service", 
              "id": "https://www.grid.ac/institutes/grid.463419.d", 
              "name": [
                "National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Evenhuis", 
            "givenName": "Jason P.", 
            "id": "sg:person.0717421535.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717421535.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Georgia", 
              "id": "https://www.grid.ac/institutes/grid.213876.9", 
              "name": [
                "Animal and Dairy Science Department, University of Georgia, Athens, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fragomeni", 
            "givenName": "Breno O.", 
            "id": "sg:person.0736353425.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736353425.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agricultural Research Service", 
              "id": "https://www.grid.ac/institutes/grid.463419.d", 
              "name": [
                "National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wiens", 
            "givenName": "Gregory D.", 
            "id": "sg:person.01132073773.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132073773.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agricultural Research Service", 
              "id": "https://www.grid.ac/institutes/grid.463419.d", 
              "name": [
                "National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palti", 
            "givenName": "Yniv", 
            "id": "sg:person.0771136206.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771136206.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1297-9686-45-39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002187062", 
              "https://doi.org/10.1186/1297-9686-45-39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2010-3866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002833261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-447-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003060396", 
              "https://doi.org/10.1007/978-1-62703-447-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-41-37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004090368", 
              "https://doi.org/10.1186/1297-9686-41-37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1003608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008209705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0138435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008847317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-46-50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009045375", 
              "https://doi.org/10.1186/1297-9686-46-50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aquaculture.2007.02.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009359786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10709-008-9308-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011541525", 
              "https://doi.org/10.1007/s10709-008-9308-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1755-0998.12337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011545547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aquaculture.2005.11.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011914541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2016.00096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015755569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.081190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017395594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.081190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017395594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-447-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017415072", 
              "https://doi.org/10.1007/978-1-62703-447-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2009-2730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020071483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2007.00701.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020174371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2007.00701.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020174371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2015.00298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020285888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-42-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020660552", 
              "https://doi.org/10.1186/1297-9686-42-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672312000274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023507834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2007.00693.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024989258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2007.00693.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024989258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2008-1514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028885396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029370066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029370066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029370066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2008-1646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029683381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10126-013-9553-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030103031", 
              "https://doi.org/10.1007/s10126-013-9553-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-43-43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030941918", 
              "https://doi.org/10.1186/1297-9686-43-43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-2016-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032573435", 
              "https://doi.org/10.1186/s12864-015-2016-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2761.2003.00488.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032978470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0075749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033257327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-10-83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035177657", 
              "https://doi.org/10.1186/1471-2156-10-83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.livsci.2014.04.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036146323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.116855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039215498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.116855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039215498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-46-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039655708", 
              "https://doi.org/10.1186/1297-9686-46-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0133-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039665694", 
              "https://doi.org/10.1186/s12711-015-0133-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0133-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039665694", 
              "https://doi.org/10.1186/s12711-015-0133-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jbg.12165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039748301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0003395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041850095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0106-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042712997", 
              "https://doi.org/10.1186/s12711-015-0106-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0106-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042712997", 
              "https://doi.org/10.1186/s12711-015-0106-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045513135", 
              "https://doi.org/10.1186/1471-2164-9-223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-2117-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049150015", 
              "https://doi.org/10.1186/s12864-015-2117-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2011.00964.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049588480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2014.00402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052288475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.85.23.9119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053426991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672308009981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054010199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1751731115002785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054944334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/301908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058609505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/303083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058610624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/316935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058621875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1874401x01104010040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069232397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/af.2016-0002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070883624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/af.2016-0004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070883626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2005-608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070885520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2008-1157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070886565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2009-2538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070887216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2010-2951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070887393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2012-5593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070888572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082576388", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: Previously, we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative that enables exploitation of within-family genetic variation.\nMETHODS: We compared three GS models [single-step genomic best linear unbiased prediction (ssGBLUP), weighted ssGBLUP (wssGBLUP), and BayesB] to predict genomic-enabled breeding values (GEBV) for BCWD resistance in a commercial rainbow trout population, and compared the accuracy of GEBV to traditional estimates of breeding values (EBV) from a pedigree-based BLUP (P-BLUP) model. We also assessed the impact of sampling design on the accuracy of GEBV predictions. For these comparisons, we used BCWD survival phenotypes recorded on 7893 fish from 102 families, of which 1473 fish from 50 families had genotypes [57\u00a0K single nucleotide polymorphism (SNP) array]. Na\u00efve siblings of the training fish (n\u00a0=\u00a0930 testing fish) were genotyped to predict their GEBV and mated to produce 138 progeny testing families. In the following generation, 9968 progeny were phenotyped to empirically assess the accuracy of GEBV predictions made on their non-phenotyped parents.\nRESULTS: The accuracy of GEBV from all tested GS models were substantially higher than the P-BLUP model EBV. The highest increase in accuracy relative to the P-BLUP model was achieved with BayesB (97.2 to 108.8%), followed by wssGBLUP at iteration 2 (94.4 to 97.1%) and 3 (88.9 to 91.2%) and ssGBLUP (83.3 to 85.3%). Reducing the training sample size to n\u00a0=\u00a0~1000 had no negative impact on the accuracy (0.67 to 0.72), but with n\u00a0=\u00a0~500 the accuracy dropped to 0.53 to 0.61 if the training and testing fish were full-sibs, and even substantially lower, to 0.22 to 0.25, when they were not full-sibs.\nCONCLUSIONS: Using progeny performance data, we showed that the accuracy of genomic predictions is substantially higher than estimates obtained from the traditional pedigree-based BLUP model for BCWD resistance. Overall, we found that using a much smaller training sample size compared to similar studies in livestock, GS can substantially improve the selection accuracy and genetic gains for this trait in a commercial rainbow trout breeding population.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12711-017-0293-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1014139", 
            "issn": [
              "0999-193X", 
              "1297-9686"
            ], 
            "name": "Genetics Selection Evolution", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "name": "Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture", 
        "pagination": "17", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e4a5cb634ec0d044c5604dc2f768cead1a0f1857c9304a8f3b61bec16b04bbd7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28148220"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114088"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12711-017-0293-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083403148"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12711-017-0293-6", 
          "https://app.dimensions.ai/details/publication/pub.1083403148"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54307_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12711-017-0293-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12711-017-0293-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12711-017-0293-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12711-017-0293-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12711-017-0293-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    381 TRIPLES      21 PREDICATES      102 URIs      38 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12711-017-0293-6 schema:about N04ef71e28b674bdcaf56449be3786ee4
    2 N0d1e5177afdc474cab5935e7c16e277d
    3 N2a03b8c6054149c08bbbb7c2e24736c6
    4 N56bf506aaef24c8e91a611da092ee41b
    5 N596b271b54114aa1ab2f7ebda1184b9a
    6 N5c1479e83f6f4191bae86e2dcd689755
    7 N7afa379dfaa64791b4a155742bc66570
    8 N7df79a881da1459aa3a38c33dfc34c4b
    9 N7e4c913a703448ce80b7edd253ba1e30
    10 N8857c02d6dfc4de0aca671afd2249fb3
    11 N9276b6bd829347689b4ad6bbdcc25f71
    12 N935f2e96bbb642bb9bd749a8cf7f9b0e
    13 N9490cfe79dad4d16875e7c48220783ee
    14 Na4660384b2874e71abac820936d5bf52
    15 Na624b071f2264b0793bc1e86e708e711
    16 Na72041634b0b4d0d9eeb6ea0d880ba29
    17 Nc733198292414a2cb9fe1fb0094ee577
    18 anzsrc-for:06
    19 anzsrc-for:0604
    20 schema:author Na35a5f8592b64edf954977fdb83e95d0
    21 schema:citation sg:pub.10.1007/978-1-62703-447-0_10
    22 sg:pub.10.1007/978-1-62703-447-0_11
    23 sg:pub.10.1007/s10126-013-9553-9
    24 sg:pub.10.1007/s10709-008-9308-0
    25 sg:pub.10.1186/1297-9686-41-37
    26 sg:pub.10.1186/1297-9686-42-2
    27 sg:pub.10.1186/1297-9686-43-43
    28 sg:pub.10.1186/1297-9686-45-39
    29 sg:pub.10.1186/1297-9686-46-3
    30 sg:pub.10.1186/1297-9686-46-50
    31 sg:pub.10.1186/1471-2156-10-83
    32 sg:pub.10.1186/1471-2164-9-223
    33 sg:pub.10.1186/s12711-015-0106-8
    34 sg:pub.10.1186/s12711-015-0133-5
    35 sg:pub.10.1186/s12864-015-2016-0
    36 sg:pub.10.1186/s12864-015-2117-9
    37 https://app.dimensions.ai/details/publication/pub.1074795580
    38 https://app.dimensions.ai/details/publication/pub.1082576388
    39 https://doi.org/10.1016/j.aquaculture.2005.11.029
    40 https://doi.org/10.1016/j.aquaculture.2007.02.012
    41 https://doi.org/10.1016/j.livsci.2014.04.029
    42 https://doi.org/10.1017/s0016672308009981
    43 https://doi.org/10.1017/s0016672312000274
    44 https://doi.org/10.1017/s1751731115002785
    45 https://doi.org/10.1046/j.1365-2761.2003.00488.x
    46 https://doi.org/10.1073/pnas.85.23.9119
    47 https://doi.org/10.1086/301908
    48 https://doi.org/10.1086/303083
    49 https://doi.org/10.1086/316935
    50 https://doi.org/10.1111/1755-0998.12337
    51 https://doi.org/10.1111/j.1439-0388.2007.00693.x
    52 https://doi.org/10.1111/j.1439-0388.2007.00701.x
    53 https://doi.org/10.1111/j.1439-0388.2011.00964.x
    54 https://doi.org/10.1111/jbg.12165
    55 https://doi.org/10.1371/journal.pgen.1003608
    56 https://doi.org/10.1371/journal.pone.0003395
    57 https://doi.org/10.1371/journal.pone.0075749
    58 https://doi.org/10.1371/journal.pone.0138435
    59 https://doi.org/10.1534/genetics.107.081190
    60 https://doi.org/10.1534/genetics.110.116855
    61 https://doi.org/10.2174/1874401x01104010040
    62 https://doi.org/10.2527/af.2016-0002
    63 https://doi.org/10.2527/af.2016-0004
    64 https://doi.org/10.2527/jas.2005-608
    65 https://doi.org/10.2527/jas.2008-1157
    66 https://doi.org/10.2527/jas.2009-2538
    67 https://doi.org/10.2527/jas.2010-2951
    68 https://doi.org/10.2527/jas.2012-5593
    69 https://doi.org/10.3168/jds.2008-1514
    70 https://doi.org/10.3168/jds.2008-1646
    71 https://doi.org/10.3168/jds.2009-2730
    72 https://doi.org/10.3168/jds.2010-3866
    73 https://doi.org/10.3168/jds.2011-4338
    74 https://doi.org/10.3389/fgene.2014.00402
    75 https://doi.org/10.3389/fgene.2015.00298
    76 https://doi.org/10.3389/fgene.2016.00096
    77 schema:datePublished 2017-12
    78 schema:datePublishedReg 2017-12-01
    79 schema:description BACKGROUND: Previously, we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative that enables exploitation of within-family genetic variation. METHODS: We compared three GS models [single-step genomic best linear unbiased prediction (ssGBLUP), weighted ssGBLUP (wssGBLUP), and BayesB] to predict genomic-enabled breeding values (GEBV) for BCWD resistance in a commercial rainbow trout population, and compared the accuracy of GEBV to traditional estimates of breeding values (EBV) from a pedigree-based BLUP (P-BLUP) model. We also assessed the impact of sampling design on the accuracy of GEBV predictions. For these comparisons, we used BCWD survival phenotypes recorded on 7893 fish from 102 families, of which 1473 fish from 50 families had genotypes [57 K single nucleotide polymorphism (SNP) array]. Naïve siblings of the training fish (n = 930 testing fish) were genotyped to predict their GEBV and mated to produce 138 progeny testing families. In the following generation, 9968 progeny were phenotyped to empirically assess the accuracy of GEBV predictions made on their non-phenotyped parents. RESULTS: The accuracy of GEBV from all tested GS models were substantially higher than the P-BLUP model EBV. The highest increase in accuracy relative to the P-BLUP model was achieved with BayesB (97.2 to 108.8%), followed by wssGBLUP at iteration 2 (94.4 to 97.1%) and 3 (88.9 to 91.2%) and ssGBLUP (83.3 to 85.3%). Reducing the training sample size to n = ~1000 had no negative impact on the accuracy (0.67 to 0.72), but with n = ~500 the accuracy dropped to 0.53 to 0.61 if the training and testing fish were full-sibs, and even substantially lower, to 0.22 to 0.25, when they were not full-sibs. CONCLUSIONS: Using progeny performance data, we showed that the accuracy of genomic predictions is substantially higher than estimates obtained from the traditional pedigree-based BLUP model for BCWD resistance. Overall, we found that using a much smaller training sample size compared to similar studies in livestock, GS can substantially improve the selection accuracy and genetic gains for this trait in a commercial rainbow trout breeding population.
    80 schema:genre research_article
    81 schema:inLanguage en
    82 schema:isAccessibleForFree true
    83 schema:isPartOf N297c7074991e4b5f8a20dd8dc5998c01
    84 N5241a1297e3340fbbab6a1d218ab4fc3
    85 sg:journal.1014139
    86 schema:name Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture
    87 schema:pagination 17
    88 schema:productId N779068bee70347c6832f308f6d99870e
    89 N7d69005c4c4c46ef94caf2cd0db59532
    90 Nafafc4b4e0f14c9ab3756ee889ef88b5
    91 Ndf900fb092ae400cb5a22061f034a601
    92 Ne6272c1e8fbe4a6d97c26c03fd9f2c98
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083403148
    94 https://doi.org/10.1186/s12711-017-0293-6
    95 schema:sdDatePublished 2019-04-11T10:17
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Nd693cbe7041341619046d3c68cd133ec
    98 schema:url https://link.springer.com/10.1186%2Fs12711-017-0293-6
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N04ef71e28b674bdcaf56449be3786ee4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Phenotype
    104 rdf:type schema:DefinedTerm
    105 N06059420f0894e6298d9b12d07b8ad27 rdf:first sg:person.01216563062.43
    106 rdf:rest N77bbf5eb17d840e38a214b5325e5dac6
    107 N0d1e5177afdc474cab5935e7c16e277d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Genetic Markers
    109 rdf:type schema:DefinedTerm
    110 N297c7074991e4b5f8a20dd8dc5998c01 schema:volumeNumber 49
    111 rdf:type schema:PublicationVolume
    112 N2a03b8c6054149c08bbbb7c2e24736c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Genomics
    114 rdf:type schema:DefinedTerm
    115 N5241a1297e3340fbbab6a1d218ab4fc3 schema:issueNumber 1
    116 rdf:type schema:PublicationIssue
    117 N56bf506aaef24c8e91a611da092ee41b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Reproducibility of Results
    119 rdf:type schema:DefinedTerm
    120 N596b271b54114aa1ab2f7ebda1184b9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Quantitative Trait Loci
    122 rdf:type schema:DefinedTerm
    123 N5c1479e83f6f4191bae86e2dcd689755 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Breeding
    125 rdf:type schema:DefinedTerm
    126 N5c2d80d218c1442d95f43eb49ba1ebe0 rdf:first sg:person.0736353425.24
    127 rdf:rest N9a28636a0de84353807e3a5842e74792
    128 N6ca907ef438f4c20a55dd60327c39468 rdf:first sg:person.01114464504.22
    129 rdf:rest Na82834b3c7494329850bfbcf30eba64e
    130 N779068bee70347c6832f308f6d99870e schema:name doi
    131 schema:value 10.1186/s12711-017-0293-6
    132 rdf:type schema:PropertyValue
    133 N77bbf5eb17d840e38a214b5325e5dac6 rdf:first sg:person.0717421535.29
    134 rdf:rest N5c2d80d218c1442d95f43eb49ba1ebe0
    135 N78adfd748dce4246ac5361ec58a271e0 rdf:first sg:person.0705150407.07
    136 rdf:rest N6ca907ef438f4c20a55dd60327c39468
    137 N7afa379dfaa64791b4a155742bc66570 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Models, Genetic
    139 rdf:type schema:DefinedTerm
    140 N7d69005c4c4c46ef94caf2cd0db59532 schema:name readcube_id
    141 schema:value e4a5cb634ec0d044c5604dc2f768cead1a0f1857c9304a8f3b61bec16b04bbd7
    142 rdf:type schema:PropertyValue
    143 N7df79a881da1459aa3a38c33dfc34c4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Polymorphism, Single Nucleotide
    145 rdf:type schema:DefinedTerm
    146 N7e4c913a703448ce80b7edd253ba1e30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Animals
    148 rdf:type schema:DefinedTerm
    149 N8857c02d6dfc4de0aca671afd2249fb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Pedigree
    151 rdf:type schema:DefinedTerm
    152 N9276b6bd829347689b4ad6bbdcc25f71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Bayes Theorem
    154 rdf:type schema:DefinedTerm
    155 N935f2e96bbb642bb9bd749a8cf7f9b0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Selection, Genetic
    157 rdf:type schema:DefinedTerm
    158 N9490cfe79dad4d16875e7c48220783ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Fish Diseases
    160 rdf:type schema:DefinedTerm
    161 N9a28636a0de84353807e3a5842e74792 rdf:first sg:person.01132073773.42
    162 rdf:rest Nca5d6e5efab04cda9976a0052809096a
    163 Na35a5f8592b64edf954977fdb83e95d0 rdf:first sg:person.01212350635.86
    164 rdf:rest N78adfd748dce4246ac5361ec58a271e0
    165 Na4660384b2874e71abac820936d5bf52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Cold Temperature
    167 rdf:type schema:DefinedTerm
    168 Na624b071f2264b0793bc1e86e708e711 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Oncorhynchus mykiss
    170 rdf:type schema:DefinedTerm
    171 Na72041634b0b4d0d9eeb6ea0d880ba29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Disease Resistance
    173 rdf:type schema:DefinedTerm
    174 Na82834b3c7494329850bfbcf30eba64e rdf:first sg:person.0607407701.28
    175 rdf:rest N06059420f0894e6298d9b12d07b8ad27
    176 Nafafc4b4e0f14c9ab3756ee889ef88b5 schema:name nlm_unique_id
    177 schema:value 9114088
    178 rdf:type schema:PropertyValue
    179 Nc733198292414a2cb9fe1fb0094ee577 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Bacterial Infections
    181 rdf:type schema:DefinedTerm
    182 Nca5d6e5efab04cda9976a0052809096a rdf:first sg:person.0771136206.50
    183 rdf:rest rdf:nil
    184 Nd693cbe7041341619046d3c68cd133ec schema:name Springer Nature - SN SciGraph project
    185 rdf:type schema:Organization
    186 Ndf900fb092ae400cb5a22061f034a601 schema:name dimensions_id
    187 schema:value pub.1083403148
    188 rdf:type schema:PropertyValue
    189 Ne6272c1e8fbe4a6d97c26c03fd9f2c98 schema:name pubmed_id
    190 schema:value 28148220
    191 rdf:type schema:PropertyValue
    192 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Biological Sciences
    194 rdf:type schema:DefinedTerm
    195 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Genetics
    197 rdf:type schema:DefinedTerm
    198 sg:journal.1014139 schema:issn 0999-193X
    199 1297-9686
    200 schema:name Genetics Selection Evolution
    201 rdf:type schema:Periodical
    202 sg:person.01114464504.22 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
    203 schema:familyName Gao
    204 schema:givenName Guangtu
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114464504.22
    206 rdf:type schema:Person
    207 sg:person.01132073773.42 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
    208 schema:familyName Wiens
    209 schema:givenName Gregory D.
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132073773.42
    211 rdf:type schema:Person
    212 sg:person.01212350635.86 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
    213 schema:familyName Vallejo
    214 schema:givenName Roger L.
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212350635.86
    216 rdf:type schema:Person
    217 sg:person.01216563062.43 schema:affiliation https://www.grid.ac/institutes/grid.427329.9
    218 schema:familyName Martin
    219 schema:givenName Kyle E.
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216563062.43
    221 rdf:type schema:Person
    222 sg:person.0607407701.28 schema:affiliation https://www.grid.ac/institutes/grid.427329.9
    223 schema:familyName Parsons
    224 schema:givenName James E.
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607407701.28
    226 rdf:type schema:Person
    227 sg:person.0705150407.07 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
    228 schema:familyName Leeds
    229 schema:givenName Timothy D.
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705150407.07
    231 rdf:type schema:Person
    232 sg:person.0717421535.29 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
    233 schema:familyName Evenhuis
    234 schema:givenName Jason P.
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717421535.29
    236 rdf:type schema:Person
    237 sg:person.0736353425.24 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
    238 schema:familyName Fragomeni
    239 schema:givenName Breno O.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736353425.24
    241 rdf:type schema:Person
    242 sg:person.0771136206.50 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
    243 schema:familyName Palti
    244 schema:givenName Yniv
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771136206.50
    246 rdf:type schema:Person
    247 sg:pub.10.1007/978-1-62703-447-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017415072
    248 https://doi.org/10.1007/978-1-62703-447-0_10
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/978-1-62703-447-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003060396
    251 https://doi.org/10.1007/978-1-62703-447-0_11
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s10126-013-9553-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030103031
    254 https://doi.org/10.1007/s10126-013-9553-9
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s10709-008-9308-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011541525
    257 https://doi.org/10.1007/s10709-008-9308-0
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/1297-9686-41-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004090368
    260 https://doi.org/10.1186/1297-9686-41-37
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/1297-9686-42-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020660552
    263 https://doi.org/10.1186/1297-9686-42-2
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/1297-9686-43-43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030941918
    266 https://doi.org/10.1186/1297-9686-43-43
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/1297-9686-45-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002187062
    269 https://doi.org/10.1186/1297-9686-45-39
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/1297-9686-46-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039655708
    272 https://doi.org/10.1186/1297-9686-46-3
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1186/1297-9686-46-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009045375
    275 https://doi.org/10.1186/1297-9686-46-50
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1186/1471-2156-10-83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035177657
    278 https://doi.org/10.1186/1471-2156-10-83
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/1471-2164-9-223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045513135
    281 https://doi.org/10.1186/1471-2164-9-223
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1186/s12711-015-0106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042712997
    284 https://doi.org/10.1186/s12711-015-0106-8
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1186/s12711-015-0133-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039665694
    287 https://doi.org/10.1186/s12711-015-0133-5
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1186/s12864-015-2016-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573435
    290 https://doi.org/10.1186/s12864-015-2016-0
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1186/s12864-015-2117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049150015
    293 https://doi.org/10.1186/s12864-015-2117-9
    294 rdf:type schema:CreativeWork
    295 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
    296 https://app.dimensions.ai/details/publication/pub.1082576388 schema:CreativeWork
    297 https://doi.org/10.1016/j.aquaculture.2005.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011914541
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1016/j.aquaculture.2007.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009359786
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1016/j.livsci.2014.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036146323
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1017/s0016672308009981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054010199
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1017/s0016672312000274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023507834
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1017/s1751731115002785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054944334
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1046/j.1365-2761.2003.00488.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032978470
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1073/pnas.85.23.9119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053426991
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1086/301908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058609505
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1086/303083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610624
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1086/316935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058621875
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1111/1755-0998.12337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011545547
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1111/j.1439-0388.2007.00693.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024989258
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1111/j.1439-0388.2007.00701.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020174371
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1111/j.1439-0388.2011.00964.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049588480
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1111/jbg.12165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039748301
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1371/journal.pgen.1003608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008209705
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1371/journal.pone.0003395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850095
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1371/journal.pone.0075749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033257327
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1371/journal.pone.0138435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008847317
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1534/genetics.107.081190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017395594
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1534/genetics.110.116855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039215498
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.2174/1874401x01104010040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069232397
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.2527/af.2016-0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883624
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.2527/af.2016-0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883626
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.2527/jas.2005-608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070885520
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.2527/jas.2008-1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070886565
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.2527/jas.2009-2538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887216
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.2527/jas.2010-2951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887393
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.2527/jas.2012-5593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070888572
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.3168/jds.2008-1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885396
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.3168/jds.2008-1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683381
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.3168/jds.2009-2730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020071483
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.3168/jds.2010-3866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002833261
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.3168/jds.2011-4338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029370066
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.3389/fgene.2014.00402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052288475
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.3389/fgene.2015.00298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020285888
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.3389/fgene.2016.00096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015755569
    372 rdf:type schema:CreativeWork
    373 https://www.grid.ac/institutes/grid.213876.9 schema:alternateName University of Georgia
    374 schema:name Animal and Dairy Science Department, University of Georgia, Athens, GA, USA
    375 rdf:type schema:Organization
    376 https://www.grid.ac/institutes/grid.427329.9 schema:alternateName Troutlodge (United States)
    377 schema:name Troutlodge, Inc., P.O. Box 1290, Sumner, WA, USA
    378 rdf:type schema:Organization
    379 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
    380 schema:name National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA
    381 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...