Thermal sensitivity of growth indicates heritable variation in 1-year-old rainbow trout (Oncorhynchus mykiss) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11-29

AUTHORS

Matti Janhunen, Juha Koskela, Nguyễn Hữu Ninh, Harri Vehviläinen, Heikki Koskinen, Antti Nousiainen, Ngô Phú Thỏa

ABSTRACT

BACKGROUND: Rainbow trout is an important aquaculture species, which has a worldwide distribution across various production environments. The diverse locations of trout farms involve remarkable variation in environmental factors such as water temperature, which is of major importance for the performance of fish. Thus, robust fish that could thrive under different and suboptimal thermal conditions is a desirable goal for trout breeding. Using a split-family experimental design (40 full-/half-sib groups) for a rainbow trout population derived from the Finnish national breeding program, we studied how two different rearing temperatures (14 and 20 °C) affect feed intake, growth rate and feed conversion ratio in 1-year-old fish. Furthermore, we quantified the additive genetic (co-)variation for daily growth coefficient (DGC) and its thermal sensitivity (TS), defined as the slope of the growth reaction norm between the two temperatures. RESULTS: The fish showed consistently lower feed intake, faster growth and better feed conversion ratio at the lower temperature. Heritability of TS of DGC was moderate ([Formula: see text]). The co-heritability parameter derived from selection index theory, which describes the heritable variance of TS, was negative when the intercept was placed at the lower temperature (-0.28). This resulted in moderate accuracy of selection. At the higher temperature, co-heritability of TS was positive (0.20). The genetic correlation between DGC and its TS was strongly negative (-0.64) when the intercept was at the lower temperature and positive (0.38) but not significantly different from zero at the higher temperature. CONCLUSIONS: The considerable amount of genetic variation in TS of growth indicates a potential for selection response and thus for targeted genetic improvement in TS. The negative genetic correlation between DGC and its TS suggests that selection for high growth rate at the lower temperature will result in more temperature-sensitive fish. Instead, the correlated response of TS is less pronounced if the selection for a higher DGC occurred at the higher temperature. It seems possible to control the correlated genetic change of TS while selecting for fast growth across environments, especially if measurements from both environments are available and breeding values for reaction norm slope are directly included in the selection index. More... »

PAGES

94

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12711-016-0272-3

DOI

http://dx.doi.org/10.1186/s12711-016-0272-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052887757

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27899075


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oncorhynchus mykiss", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermosensing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biometrical Genetics, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Biometrical Genetics, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janhunen", 
        "givenName": "Matti", 
        "id": "sg:person.015111704405.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015111704405.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aquaculture, Natural Resources Institute Finland (Luke), Survontie 9 A, 40500 Jyv\u00e4skyl\u00e4, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Aquaculture, Natural Resources Institute Finland (Luke), Survontie 9 A, 40500 Jyv\u00e4skyl\u00e4, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koskela", 
        "givenName": "Juha", 
        "id": "sg:person.014004716424.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014004716424.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute for Aquaculture No. 3 (RIA-3), Nha Trang, Khanh Hoa Vietnam", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research Institute for Aquaculture No. 3 (RIA-3), Nha Trang, Khanh Hoa Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ninh", 
        "givenName": "Nguy\u1ec5n H\u1eefu", 
        "id": "sg:person.012273621727.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012273621727.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biometrical Genetics, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Biometrical Genetics, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vehvil\u00e4inen", 
        "givenName": "Harri", 
        "id": "sg:person.01227660627.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227660627.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tervo Fish Farm, Natural Resources Institute Finland (Luke), Huuhtajantie 160, 72210 Tervo, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Tervo Fish Farm, Natural Resources Institute Finland (Luke), Huuhtajantie 160, 72210 Tervo, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koskinen", 
        "givenName": "Heikki", 
        "id": "sg:person.01170167572.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170167572.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tervo Fish Farm, Natural Resources Institute Finland (Luke), Huuhtajantie 160, 72210 Tervo, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Tervo Fish Farm, Natural Resources Institute Finland (Luke), Huuhtajantie 160, 72210 Tervo, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nousiainen", 
        "givenName": "Antti", 
        "id": "sg:person.01342672501.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342672501.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute for Aquaculture No. 1 (RIA-1), Dinh Bang, Tu Son, Bac Ninh Vietnam", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research Institute for Aquaculture No. 1 (RIA-1), Dinh Bang, Tu Son, Bac Ninh Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Th\u1ecfa", 
        "givenName": "Ng\u00f4 Ph\u00fa", 
        "id": "sg:person.01033304361.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033304361.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1297-9686-36-4-435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032138076", 
          "https://doi.org/10.1186/1297-9686-36-4-435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-36-3-363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017886000", 
          "https://doi.org/10.1186/1297-9686-36-3-363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1973.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023313557", 
          "https://doi.org/10.1038/hdy.1973.4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2010.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004661591", 
          "https://doi.org/10.1038/hdy.2010.166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010956716539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006153854", 
          "https://doi.org/10.1023/a:1010956716539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00038926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024781584", 
          "https://doi.org/10.1007/bf00038926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.hdy.6800088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051513978", 
          "https://doi.org/10.1038/sj.hdy.6800088"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11-29", 
    "datePublishedReg": "2016-11-29", 
    "description": "BACKGROUND: Rainbow trout is an important aquaculture species, which has a worldwide distribution across various production environments. The diverse locations of trout farms involve remarkable variation in environmental factors such as water temperature, which is of major importance for the performance of fish. Thus, robust fish that could thrive under different and suboptimal thermal conditions is a desirable goal for trout breeding. Using a split-family experimental design (40 full-/half-sib groups) for a rainbow trout population derived from the Finnish national breeding program, we studied how two different rearing temperatures (14 and 20\u00a0\u00b0C) affect feed intake, growth rate and feed conversion ratio in 1-year-old fish. Furthermore, we quantified the additive genetic (co-)variation for daily growth coefficient (DGC) and its thermal sensitivity (TS), defined as the slope of the growth reaction norm between the two temperatures.\nRESULTS: The fish showed consistently lower feed intake, faster growth and better feed conversion ratio at the lower temperature. Heritability of TS of DGC was moderate ([Formula: see text]). The co-heritability parameter derived from selection index theory, which describes the heritable variance of TS, was negative when the intercept was placed at the lower temperature (-0.28). This resulted in moderate accuracy of selection. At the higher temperature, co-heritability of TS was positive (0.20). The genetic correlation between DGC and its TS was strongly negative (-0.64) when the intercept was at the lower temperature and positive (0.38) but not significantly different from zero at the higher temperature.\nCONCLUSIONS: The considerable amount of genetic variation in TS of growth indicates a potential for selection response and thus for targeted genetic improvement in TS. The negative genetic correlation between DGC and its TS suggests that selection for high growth rate at the lower temperature will result in more temperature-sensitive fish. Instead, the correlated response of TS is less pronounced if the selection for a higher DGC occurred at the higher temperature. It seems possible to control the correlated genetic change of TS while selecting for fast growth across environments, especially if measurements from both environments are available and breeding values for reaction norm slope are directly included in the selection index.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12711-016-0272-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1014139", 
        "issn": [
          "0999-193X", 
          "1297-9686"
        ], 
        "name": "Genetics Selection Evolution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "daily growth coefficient", 
      "reaction norm slopes", 
      "growth reaction norms", 
      "genetic correlations", 
      "important aquaculture species", 
      "rainbow trout populations", 
      "correlated genetic changes", 
      "negative genetic correlation", 
      "rainbow trout", 
      "national breeding programs", 
      "suboptimal thermal conditions", 
      "heritable variation", 
      "robust fish", 
      "selection index theory", 
      "aquaculture species", 
      "reaction norms", 
      "genetic variation", 
      "genetic improvement", 
      "trout populations", 
      "breeding programs", 
      "fast growth", 
      "thermal sensitivity", 
      "genetic changes", 
      "growth rate", 
      "heritable variance", 
      "performance of fish", 
      "selection response", 
      "temperature-sensitive fish", 
      "high growth rate", 
      "fish", 
      "correlated response", 
      "selection index", 
      "worldwide distribution", 
      "additive genetic", 
      "trout farms", 
      "environmental factors", 
      "water temperature", 
      "trout", 
      "remarkable variation", 
      "diverse locations", 
      "growth coefficient", 
      "growth", 
      "feed conversion ratio", 
      "breeding", 
      "genetics", 
      "species", 
      "heritability", 
      "selection", 
      "major importance", 
      "variation", 
      "lower feed intake", 
      "low temperature", 
      "response", 
      "conversion ratio", 
      "high temperature", 
      "environment", 
      "feed intake", 
      "population", 
      "experimental design", 
      "considerable amount", 
      "thermal conditions", 
      "best feed conversion ratio", 
      "production environment", 
      "importance", 
      "factors", 
      "sensitivity", 
      "potential", 
      "changes", 
      "farms", 
      "distribution", 
      "location", 
      "rate", 
      "desirable goal", 
      "correlation", 
      "amount", 
      "conditions", 
      "temperature", 
      "variance", 
      "slope", 
      "ratio", 
      "index theory", 
      "program", 
      "CO", 
      "intercept", 
      "intake", 
      "index", 
      "moderate accuracy", 
      "goal", 
      "values", 
      "parameters", 
      "improvement", 
      "design", 
      "measurements", 
      "coefficient", 
      "performance", 
      "theory", 
      "accuracy", 
      "norms", 
      "trout breeding", 
      "split-family experimental design", 
      "Finnish national breeding program", 
      "Heritability of TS", 
      "co-heritability parameter", 
      "TS of growth", 
      "more temperature-sensitive fish", 
      "higher DGC", 
      "norm slope"
    ], 
    "name": "Thermal sensitivity of growth indicates heritable variation in 1-year-old rainbow trout (Oncorhynchus mykiss)", 
    "pagination": "94", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052887757"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12711-016-0272-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27899075"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12711-016-0272-3", 
      "https://app.dimensions.ai/details/publication/pub.1052887757"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_700.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12711-016-0272-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12711-016-0272-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12711-016-0272-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12711-016-0272-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12711-016-0272-3'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      22 PREDICATES      147 URIs      132 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12711-016-0272-3 schema:about N22c99951e6b44dce94e8da187099e6f8
2 N26c5c8a9d90e4dae9e048be9049d54c6
3 Na7a0d9851a6344519262779232fc6ff9
4 Na7d5bc6b560542e69b71be95578b1679
5 Nc8b0d1544cbd4112ac03e192e738fe3f
6 Nf1b64ddfc5ad406d9ecd26980891ac29
7 Nf533b2323d924eaea90f3714befe7ef9
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N1f49880b36ad46d5b8d6aeb7ef4ee7f5
11 schema:citation sg:pub.10.1007/bf00038926
12 sg:pub.10.1023/a:1010956716539
13 sg:pub.10.1038/hdy.1973.4
14 sg:pub.10.1038/hdy.2010.166
15 sg:pub.10.1038/sj.hdy.6800088
16 sg:pub.10.1186/1297-9686-36-3-363
17 sg:pub.10.1186/1297-9686-36-4-435
18 schema:datePublished 2016-11-29
19 schema:datePublishedReg 2016-11-29
20 schema:description BACKGROUND: Rainbow trout is an important aquaculture species, which has a worldwide distribution across various production environments. The diverse locations of trout farms involve remarkable variation in environmental factors such as water temperature, which is of major importance for the performance of fish. Thus, robust fish that could thrive under different and suboptimal thermal conditions is a desirable goal for trout breeding. Using a split-family experimental design (40 full-/half-sib groups) for a rainbow trout population derived from the Finnish national breeding program, we studied how two different rearing temperatures (14 and 20 °C) affect feed intake, growth rate and feed conversion ratio in 1-year-old fish. Furthermore, we quantified the additive genetic (co-)variation for daily growth coefficient (DGC) and its thermal sensitivity (TS), defined as the slope of the growth reaction norm between the two temperatures. RESULTS: The fish showed consistently lower feed intake, faster growth and better feed conversion ratio at the lower temperature. Heritability of TS of DGC was moderate ([Formula: see text]). The co-heritability parameter derived from selection index theory, which describes the heritable variance of TS, was negative when the intercept was placed at the lower temperature (-0.28). This resulted in moderate accuracy of selection. At the higher temperature, co-heritability of TS was positive (0.20). The genetic correlation between DGC and its TS was strongly negative (-0.64) when the intercept was at the lower temperature and positive (0.38) but not significantly different from zero at the higher temperature. CONCLUSIONS: The considerable amount of genetic variation in TS of growth indicates a potential for selection response and thus for targeted genetic improvement in TS. The negative genetic correlation between DGC and its TS suggests that selection for high growth rate at the lower temperature will result in more temperature-sensitive fish. Instead, the correlated response of TS is less pronounced if the selection for a higher DGC occurred at the higher temperature. It seems possible to control the correlated genetic change of TS while selecting for fast growth across environments, especially if measurements from both environments are available and breeding values for reaction norm slope are directly included in the selection index.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N86460d6756e24b34a9efdbbb0f033338
25 Na1623c3db0e14ff486bc7b15295df863
26 sg:journal.1014139
27 schema:keywords CO
28 Finnish national breeding program
29 Heritability of TS
30 TS of growth
31 accuracy
32 additive genetic
33 amount
34 aquaculture species
35 best feed conversion ratio
36 breeding
37 breeding programs
38 changes
39 co-heritability parameter
40 coefficient
41 conditions
42 considerable amount
43 conversion ratio
44 correlated genetic changes
45 correlated response
46 correlation
47 daily growth coefficient
48 design
49 desirable goal
50 distribution
51 diverse locations
52 environment
53 environmental factors
54 experimental design
55 factors
56 farms
57 fast growth
58 feed conversion ratio
59 feed intake
60 fish
61 genetic changes
62 genetic correlations
63 genetic improvement
64 genetic variation
65 genetics
66 goal
67 growth
68 growth coefficient
69 growth rate
70 growth reaction norms
71 heritability
72 heritable variance
73 heritable variation
74 high growth rate
75 high temperature
76 higher DGC
77 importance
78 important aquaculture species
79 improvement
80 index
81 index theory
82 intake
83 intercept
84 location
85 low temperature
86 lower feed intake
87 major importance
88 measurements
89 moderate accuracy
90 more temperature-sensitive fish
91 national breeding programs
92 negative genetic correlation
93 norm slope
94 norms
95 parameters
96 performance
97 performance of fish
98 population
99 potential
100 production environment
101 program
102 rainbow trout
103 rainbow trout populations
104 rate
105 ratio
106 reaction norm slopes
107 reaction norms
108 remarkable variation
109 response
110 robust fish
111 selection
112 selection index
113 selection index theory
114 selection response
115 sensitivity
116 slope
117 species
118 split-family experimental design
119 suboptimal thermal conditions
120 temperature
121 temperature-sensitive fish
122 theory
123 thermal conditions
124 thermal sensitivity
125 trout
126 trout breeding
127 trout farms
128 trout populations
129 values
130 variance
131 variation
132 water temperature
133 worldwide distribution
134 schema:name Thermal sensitivity of growth indicates heritable variation in 1-year-old rainbow trout (Oncorhynchus mykiss)
135 schema:pagination 94
136 schema:productId N30c2bef8e74242278a0009e35a6f56fe
137 N8695864705044c5cbaef0562798d9dc0
138 N976cf853f6414ed5b0e08b4324600453
139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052887757
140 https://doi.org/10.1186/s12711-016-0272-3
141 schema:sdDatePublished 2021-12-01T19:37
142 schema:sdLicense https://scigraph.springernature.com/explorer/license/
143 schema:sdPublisher N39ec04b5d50b435b91200351eb7e7ab4
144 schema:url https://doi.org/10.1186/s12711-016-0272-3
145 sgo:license sg:explorer/license/
146 sgo:sdDataset articles
147 rdf:type schema:ScholarlyArticle
148 N060e82ee426a4d678b2a2b03ef2ebd2d rdf:first sg:person.014004716424.13
149 rdf:rest N5fad957788fc42f79ad597366c37b7a1
150 N1b05601447b445a09cd6a1ecfb17a745 rdf:first sg:person.01170167572.41
151 rdf:rest Ne89646113c9640f5a9251ab0e8e70db1
152 N1f49880b36ad46d5b8d6aeb7ef4ee7f5 rdf:first sg:person.015111704405.19
153 rdf:rest N060e82ee426a4d678b2a2b03ef2ebd2d
154 N22c99951e6b44dce94e8da187099e6f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Genetic Association Studies
156 rdf:type schema:DefinedTerm
157 N26c5c8a9d90e4dae9e048be9049d54c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Animals
159 rdf:type schema:DefinedTerm
160 N30c2bef8e74242278a0009e35a6f56fe schema:name pubmed_id
161 schema:value 27899075
162 rdf:type schema:PropertyValue
163 N39ec04b5d50b435b91200351eb7e7ab4 schema:name Springer Nature - SN SciGraph project
164 rdf:type schema:Organization
165 N5fad957788fc42f79ad597366c37b7a1 rdf:first sg:person.012273621727.38
166 rdf:rest N791df096d7c34fa89d39bf88249de4f5
167 N791df096d7c34fa89d39bf88249de4f5 rdf:first sg:person.01227660627.27
168 rdf:rest N1b05601447b445a09cd6a1ecfb17a745
169 N86460d6756e24b34a9efdbbb0f033338 schema:volumeNumber 48
170 rdf:type schema:PublicationVolume
171 N8695864705044c5cbaef0562798d9dc0 schema:name dimensions_id
172 schema:value pub.1052887757
173 rdf:type schema:PropertyValue
174 N976cf853f6414ed5b0e08b4324600453 schema:name doi
175 schema:value 10.1186/s12711-016-0272-3
176 rdf:type schema:PropertyValue
177 Na1623c3db0e14ff486bc7b15295df863 schema:issueNumber 1
178 rdf:type schema:PublicationIssue
179 Na7a0d9851a6344519262779232fc6ff9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Genetic Variation
181 rdf:type schema:DefinedTerm
182 Na7d5bc6b560542e69b71be95578b1679 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Temperature
184 rdf:type schema:DefinedTerm
185 Nb81666851a344a58ab1ca0083159174b rdf:first sg:person.01033304361.85
186 rdf:rest rdf:nil
187 Nc8b0d1544cbd4112ac03e192e738fe3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Quantitative Trait, Heritable
189 rdf:type schema:DefinedTerm
190 Ne89646113c9640f5a9251ab0e8e70db1 rdf:first sg:person.01342672501.67
191 rdf:rest Nb81666851a344a58ab1ca0083159174b
192 Nf1b64ddfc5ad406d9ecd26980891ac29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Thermosensing
194 rdf:type schema:DefinedTerm
195 Nf533b2323d924eaea90f3714befe7ef9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Oncorhynchus mykiss
197 rdf:type schema:DefinedTerm
198 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
199 schema:name Biological Sciences
200 rdf:type schema:DefinedTerm
201 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
202 schema:name Genetics
203 rdf:type schema:DefinedTerm
204 sg:journal.1014139 schema:issn 0999-193X
205 1297-9686
206 schema:name Genetics Selection Evolution
207 schema:publisher Springer Nature
208 rdf:type schema:Periodical
209 sg:person.01033304361.85 schema:affiliation grid-institutes:None
210 schema:familyName Thỏa
211 schema:givenName Ngô Phú
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033304361.85
213 rdf:type schema:Person
214 sg:person.01170167572.41 schema:affiliation grid-institutes:grid.22642.30
215 schema:familyName Koskinen
216 schema:givenName Heikki
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170167572.41
218 rdf:type schema:Person
219 sg:person.012273621727.38 schema:affiliation grid-institutes:None
220 schema:familyName Ninh
221 schema:givenName Nguyễn Hữu
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012273621727.38
223 rdf:type schema:Person
224 sg:person.01227660627.27 schema:affiliation grid-institutes:grid.22642.30
225 schema:familyName Vehviläinen
226 schema:givenName Harri
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227660627.27
228 rdf:type schema:Person
229 sg:person.01342672501.67 schema:affiliation grid-institutes:grid.22642.30
230 schema:familyName Nousiainen
231 schema:givenName Antti
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342672501.67
233 rdf:type schema:Person
234 sg:person.014004716424.13 schema:affiliation grid-institutes:grid.22642.30
235 schema:familyName Koskela
236 schema:givenName Juha
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014004716424.13
238 rdf:type schema:Person
239 sg:person.015111704405.19 schema:affiliation grid-institutes:grid.22642.30
240 schema:familyName Janhunen
241 schema:givenName Matti
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015111704405.19
243 rdf:type schema:Person
244 sg:pub.10.1007/bf00038926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024781584
245 https://doi.org/10.1007/bf00038926
246 rdf:type schema:CreativeWork
247 sg:pub.10.1023/a:1010956716539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006153854
248 https://doi.org/10.1023/a:1010956716539
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/hdy.1973.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023313557
251 https://doi.org/10.1038/hdy.1973.4
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/hdy.2010.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004661591
254 https://doi.org/10.1038/hdy.2010.166
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/sj.hdy.6800088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051513978
257 https://doi.org/10.1038/sj.hdy.6800088
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/1297-9686-36-3-363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017886000
260 https://doi.org/10.1186/1297-9686-36-3-363
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/1297-9686-36-4-435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032138076
263 https://doi.org/10.1186/1297-9686-36-4-435
264 rdf:type schema:CreativeWork
265 grid-institutes:None schema:alternateName Research Institute for Aquaculture No. 1 (RIA-1), Dinh Bang, Tu Son, Bac Ninh Vietnam
266 Research Institute for Aquaculture No. 3 (RIA-3), Nha Trang, Khanh Hoa Vietnam
267 schema:name Research Institute for Aquaculture No. 1 (RIA-1), Dinh Bang, Tu Son, Bac Ninh Vietnam
268 Research Institute for Aquaculture No. 3 (RIA-3), Nha Trang, Khanh Hoa Vietnam
269 rdf:type schema:Organization
270 grid-institutes:grid.22642.30 schema:alternateName Aquaculture, Natural Resources Institute Finland (Luke), Survontie 9 A, 40500 Jyväskylä, Finland
271 Biometrical Genetics, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland
272 Tervo Fish Farm, Natural Resources Institute Finland (Luke), Huuhtajantie 160, 72210 Tervo, Finland
273 schema:name Aquaculture, Natural Resources Institute Finland (Luke), Survontie 9 A, 40500 Jyväskylä, Finland
274 Biometrical Genetics, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland
275 Tervo Fish Farm, Natural Resources Institute Finland (Luke), Huuhtajantie 160, 72210 Tervo, Finland
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...