Sequence- vs. chip-assisted genomic selection: accurate biological information is advised View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Miguel Pérez-Enciso, Juan C Rincón, Andrés Legarra

ABSTRACT

BACKGROUND: The development of next-generation sequencing technologies (NGS) has made the use of whole-genome sequence data for routine genetic evaluations possible, which has triggered a considerable interest in animal and plant breeding fields. Here, we investigated whether complete or partial sequence data can improve upon existing SNP (single nucleotide polymorphism) array-based selection strategies by simulation using a mixed coalescence - gene-dropping approach. RESULTS: We simulated 20 or 100 causal mutations (quantitative trait nucleotides, QTN) within 65 predefined 'gene' regions, each 10 kb long, within a genome composed of ten 3-Mb chromosomes. We compared prediction accuracy by cross-validation using a medium-density chip (7.5 k SNPs), a high-density (HD, 17 k) and sequence data (335 k). Genetic evaluation was based on a GBLUP method. The simulations showed: (1) a law of diminishing returns with increasing number of SNPs; (2) a modest effect of SNP ascertainment bias in arrays; (3) a small advantage of using whole-genome sequence data vs. HD arrays i.e. ~4%; (4) a minor effect of NGS errors except when imputation error rates are high (≥20%); and (5) if QTN were known, prediction accuracy approached 1. Since this is obviously unrealistic, we explored milder assumptions. We showed that, if all SNPs within causal genes were included in the prediction model, accuracy could also dramatically increase by ~40%. However, this criterion was highly sensitive to either misspecification (including wrong genes) or to the use of an incomplete gene list; in these cases, accuracy fell rapidly towards that reached when all SNPs from sequence data were blindly included in the model. CONCLUSIONS: Our study shows that, unless an accurate prior estimate on the functionality of SNPs can be included in the predictor, there is a law of diminishing returns with increasing SNP density. As a result, use of whole-genome sequence data may not result in a highly increased selection response over high-density genotyping. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12711-015-0117-5

DOI

http://dx.doi.org/10.1186/s12711-015-0117-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022714551

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25956961


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotyping Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Barcelona, Bellaterra, Spain", 
            "Departament de Ci\u00e8ncia Animal i dels Aliments, Universitat Aut\u00f2noma de Barcelona, 08193, Barcelona, Bellaterra, Spain", 
            "Institut Catal\u00e0 de Recerca i Estudis Avan\u00e7ats (ICREA), Carrer de Llu\u00eds Companys 23, 08010, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez-Enciso", 
        "givenName": "Miguel", 
        "id": "sg:person.01041433710.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Colombia", 
          "id": "https://www.grid.ac/institutes/grid.10689.36", 
          "name": [
            "Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Barcelona, Bellaterra, Spain", 
            "Universidad Nacional de Colombia, Sede Medell\u00edn, Facultad de Ciencias Agrarias, Departamento de producci\u00f3n Animal, Medell\u00edn, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rinc\u00f3n", 
        "givenName": "Juan C", 
        "id": "sg:person.01210307256.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210307256.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRA, UMR 1388 GENPHYSE, G\u00e9n\u00e9tique, Physiologie et Syst\u00e8mes d\u2019Elevage, 31326, Castanet-Tolosan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legarra", 
        "givenName": "Andr\u00e9s", 
        "id": "sg:person.01223466241.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223466241.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng0508-489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000802607", 
          "https://doi.org/10.1038/ng0508-489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jbg.12074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000908382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.201300014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002532349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.151753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003979530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.151753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003979530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2014.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004964282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0019379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005754650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010221272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.114.168344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010647784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.114.168344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010647784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2012.03158.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013462041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2013.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013905892", 
          "https://doi.org/10.1038/hdy.2013.13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017230219", 
          "https://doi.org/10.1186/1471-2164-15-246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017425948", 
          "https://doi.org/10.1038/nrg795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017425948", 
          "https://doi.org/10.1038/nrg795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.083634.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019006318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-46-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019198414", 
          "https://doi.org/10.1186/1297-9686-46-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022243201", 
          "https://doi.org/10.1038/nrg2146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.108.094128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022389324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.108.094128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022389324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mec.12693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025200061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2013-7525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027758142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028025360", 
          "https://doi.org/10.1038/ng.3034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028885396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029683381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2009.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035482532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037949611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039479788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-33-3-209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045489495", 
          "https://doi.org/10.1186/1297-9686-33-3-209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.111.135541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045699661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.111.135541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045699661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046238371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.116590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052325582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.116590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052325582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2012-5702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053191208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/jun0207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075076543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077537167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077799697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077900359"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: The development of next-generation sequencing technologies (NGS) has made the use of whole-genome sequence data for routine genetic evaluations possible, which has triggered a considerable interest in animal and plant breeding fields. Here, we investigated whether complete or partial sequence data can improve upon existing SNP (single nucleotide polymorphism) array-based selection strategies by simulation using a mixed coalescence - gene-dropping approach.\nRESULTS: We simulated 20 or 100 causal mutations (quantitative trait nucleotides, QTN) within 65 predefined 'gene' regions, each 10 kb long, within a genome composed of ten 3-Mb chromosomes. We compared prediction accuracy by cross-validation using a medium-density chip (7.5 k SNPs), a high-density (HD, 17 k) and sequence data (335 k). Genetic evaluation was based on a GBLUP method. The simulations showed: (1) a law of diminishing returns with increasing number of SNPs; (2) a modest effect of SNP ascertainment bias in arrays; (3) a small advantage of using whole-genome sequence data vs. HD arrays i.e. ~4%; (4) a minor effect of NGS errors except when imputation error rates are high (\u226520%); and (5) if QTN were known, prediction accuracy approached 1. Since this is obviously unrealistic, we explored milder assumptions. We showed that, if all SNPs within causal genes were included in the prediction model, accuracy could also dramatically increase by ~40%. However, this criterion was highly sensitive to either misspecification (including wrong genes) or to the use of an incomplete gene list; in these cases, accuracy fell rapidly towards that reached when all SNPs from sequence data were blindly included in the model.\nCONCLUSIONS: Our study shows that, unless an accurate prior estimate on the functionality of SNPs can be included in the predictor, there is a law of diminishing returns with increasing SNP density. As a result, use of whole-genome sequence data may not result in a highly increased selection response over high-density genotyping.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12711-015-0117-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1014139", 
        "issn": [
          "0999-193X", 
          "1297-9686"
        ], 
        "name": "Genetics Selection Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Sequence- vs. chip-assisted genomic selection: accurate biological information is advised", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6c37013626656e121b8c81a3bf829243cbea35327ec334903f9f8686b57c7ba6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25956961"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114088"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12711-015-0117-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022714551"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12711-015-0117-5", 
      "https://app.dimensions.ai/details/publication/pub.1022714551"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12711-015-0117-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12711-015-0117-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12711-015-0117-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12711-015-0117-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12711-015-0117-5'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      77 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12711-015-0117-5 schema:about N2acffed5fd404b35b133ec95465251fd
2 N7218715fbcc646949a5b2b03fe48017e
3 N746d94641e2c4e8489d23139eb1e4418
4 N862598ade18e4582b6054d76cf1fa7d0
5 N87b93d8d26c14d1193bb96b55fc7faff
6 Naa6c588243734078b30c69e1fb35e18c
7 Nb1d22849318843ffadbc873b907f26e7
8 Nc63ad5b9920d43879b126fb28e46d0e1
9 Ne7ea63995b914a4fbab9db3c9488ddfe
10 Nf6aa6549f62e4c119768efa2003c5d3d
11 Nf7235a3175d34f1e9ad5ce063b30a6a3
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N91f356ef25044f1fb15367103919c4e1
15 schema:citation sg:pub.10.1038/hdy.2013.13
16 sg:pub.10.1038/nature08494
17 sg:pub.10.1038/ng.3034
18 sg:pub.10.1038/ng0508-489
19 sg:pub.10.1038/nrg2146
20 sg:pub.10.1038/nrg795
21 sg:pub.10.1186/1297-9686-33-3-209
22 sg:pub.10.1186/1297-9686-46-41
23 sg:pub.10.1186/1471-2164-15-246
24 https://app.dimensions.ai/details/publication/pub.1074795580
25 https://doi.org/10.1002/bies.201300014
26 https://doi.org/10.1016/j.gde.2014.09.005
27 https://doi.org/10.1016/j.ygeno.2009.04.005
28 https://doi.org/10.1093/bioinformatics/btp352
29 https://doi.org/10.1101/gr.083634.108
30 https://doi.org/10.1101/gr.107524.110
31 https://doi.org/10.1111/1755-0998.12286
32 https://doi.org/10.1111/j.1755-0998.2012.03158.x
33 https://doi.org/10.1111/jbg.12074
34 https://doi.org/10.1111/mec.12693
35 https://doi.org/10.1126/science.1167936
36 https://doi.org/10.1371/journal.pgen.1000008
37 https://doi.org/10.1371/journal.pgen.1002685
38 https://doi.org/10.1371/journal.pone.0019379
39 https://doi.org/10.1534/genetics.108.094128
40 https://doi.org/10.1534/genetics.110.116590
41 https://doi.org/10.1534/genetics.111.135541
42 https://doi.org/10.1534/genetics.113.151753
43 https://doi.org/10.1534/genetics.114.168344
44 https://doi.org/10.2144/jun0207
45 https://doi.org/10.3168/jds.2007-0403
46 https://doi.org/10.3168/jds.2007-0980
47 https://doi.org/10.3168/jds.2008-1514
48 https://doi.org/10.3168/jds.2008-1646
49 https://doi.org/10.3168/jds.2008-1762
50 https://doi.org/10.3168/jds.2012-5702
51 https://doi.org/10.3168/jds.2013-7525
52 schema:datePublished 2015-12
53 schema:datePublishedReg 2015-12-01
54 schema:description BACKGROUND: The development of next-generation sequencing technologies (NGS) has made the use of whole-genome sequence data for routine genetic evaluations possible, which has triggered a considerable interest in animal and plant breeding fields. Here, we investigated whether complete or partial sequence data can improve upon existing SNP (single nucleotide polymorphism) array-based selection strategies by simulation using a mixed coalescence - gene-dropping approach. RESULTS: We simulated 20 or 100 causal mutations (quantitative trait nucleotides, QTN) within 65 predefined 'gene' regions, each 10 kb long, within a genome composed of ten 3-Mb chromosomes. We compared prediction accuracy by cross-validation using a medium-density chip (7.5 k SNPs), a high-density (HD, 17 k) and sequence data (335 k). Genetic evaluation was based on a GBLUP method. The simulations showed: (1) a law of diminishing returns with increasing number of SNPs; (2) a modest effect of SNP ascertainment bias in arrays; (3) a small advantage of using whole-genome sequence data vs. HD arrays i.e. ~4%; (4) a minor effect of NGS errors except when imputation error rates are high (≥20%); and (5) if QTN were known, prediction accuracy approached 1. Since this is obviously unrealistic, we explored milder assumptions. We showed that, if all SNPs within causal genes were included in the prediction model, accuracy could also dramatically increase by ~40%. However, this criterion was highly sensitive to either misspecification (including wrong genes) or to the use of an incomplete gene list; in these cases, accuracy fell rapidly towards that reached when all SNPs from sequence data were blindly included in the model. CONCLUSIONS: Our study shows that, unless an accurate prior estimate on the functionality of SNPs can be included in the predictor, there is a law of diminishing returns with increasing SNP density. As a result, use of whole-genome sequence data may not result in a highly increased selection response over high-density genotyping.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N7e039a16a5674370bca90a5993f9c6a5
59 Nec9a24e57d2049449ca4c4765566424d
60 sg:journal.1014139
61 schema:name Sequence- vs. chip-assisted genomic selection: accurate biological information is advised
62 schema:pagination 43
63 schema:productId N1aaa26d8e41b43179cd210494a204e0c
64 N24758d8b764f4f02a286b38929288a3b
65 N29fe531dbd7e485faf7d4e28729079d5
66 N4f51354701f24e63a4d617270132dddb
67 Nabfb9605a3c3437eae55edbefb425320
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022714551
69 https://doi.org/10.1186/s12711-015-0117-5
70 schema:sdDatePublished 2019-04-11T09:55
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N9d89cd05f5c749cf8edd4ef41de4cca0
73 schema:url http://link.springer.com/10.1186%2Fs12711-015-0117-5
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N198e491110f04a7eb4c15d9d9d1cb15f rdf:first sg:person.01223466241.87
78 rdf:rest rdf:nil
79 N19a487ffc9b240e181fd16aee9ffbc02 rdf:first sg:person.01210307256.23
80 rdf:rest N198e491110f04a7eb4c15d9d9d1cb15f
81 N1aaa26d8e41b43179cd210494a204e0c schema:name readcube_id
82 schema:value 6c37013626656e121b8c81a3bf829243cbea35327ec334903f9f8686b57c7ba6
83 rdf:type schema:PropertyValue
84 N24758d8b764f4f02a286b38929288a3b schema:name dimensions_id
85 schema:value pub.1022714551
86 rdf:type schema:PropertyValue
87 N29fe531dbd7e485faf7d4e28729079d5 schema:name doi
88 schema:value 10.1186/s12711-015-0117-5
89 rdf:type schema:PropertyValue
90 N2acffed5fd404b35b133ec95465251fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Animals
92 rdf:type schema:DefinedTerm
93 N4f51354701f24e63a4d617270132dddb schema:name nlm_unique_id
94 schema:value 9114088
95 rdf:type schema:PropertyValue
96 N54237859d643468ca44d3ffa4dd665d8 schema:name INRA, UMR 1388 GENPHYSE, Génétique, Physiologie et Systèmes d’Elevage, 31326, Castanet-Tolosan, France
97 rdf:type schema:Organization
98 N7218715fbcc646949a5b2b03fe48017e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Oligonucleotide Array Sequence Analysis
100 rdf:type schema:DefinedTerm
101 N746d94641e2c4e8489d23139eb1e4418 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Mutation
103 rdf:type schema:DefinedTerm
104 N7e039a16a5674370bca90a5993f9c6a5 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N862598ade18e4582b6054d76cf1fa7d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Breeding
108 rdf:type schema:DefinedTerm
109 N87b93d8d26c14d1193bb96b55fc7faff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Genomics
111 rdf:type schema:DefinedTerm
112 N91f356ef25044f1fb15367103919c4e1 rdf:first sg:person.01041433710.67
113 rdf:rest N19a487ffc9b240e181fd16aee9ffbc02
114 N9d89cd05f5c749cf8edd4ef41de4cca0 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Naa6c588243734078b30c69e1fb35e18c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Genotyping Techniques
118 rdf:type schema:DefinedTerm
119 Nabfb9605a3c3437eae55edbefb425320 schema:name pubmed_id
120 schema:value 25956961
121 rdf:type schema:PropertyValue
122 Nb1d22849318843ffadbc873b907f26e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name High-Throughput Nucleotide Sequencing
124 rdf:type schema:DefinedTerm
125 Nc63ad5b9920d43879b126fb28e46d0e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Cattle
127 rdf:type schema:DefinedTerm
128 Ne7ea63995b914a4fbab9db3c9488ddfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Polymorphism, Single Nucleotide
130 rdf:type schema:DefinedTerm
131 Nec9a24e57d2049449ca4c4765566424d schema:volumeNumber 47
132 rdf:type schema:PublicationVolume
133 Nf6aa6549f62e4c119768efa2003c5d3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Sequence Analysis, DNA
135 rdf:type schema:DefinedTerm
136 Nf7235a3175d34f1e9ad5ce063b30a6a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Reproducibility of Results
138 rdf:type schema:DefinedTerm
139 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biological Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
143 schema:name Genetics
144 rdf:type schema:DefinedTerm
145 sg:journal.1014139 schema:issn 0999-193X
146 1297-9686
147 schema:name Genetics Selection Evolution
148 rdf:type schema:Periodical
149 sg:person.01041433710.67 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
150 schema:familyName Pérez-Enciso
151 schema:givenName Miguel
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67
153 rdf:type schema:Person
154 sg:person.01210307256.23 schema:affiliation https://www.grid.ac/institutes/grid.10689.36
155 schema:familyName Rincón
156 schema:givenName Juan C
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210307256.23
158 rdf:type schema:Person
159 sg:person.01223466241.87 schema:affiliation N54237859d643468ca44d3ffa4dd665d8
160 schema:familyName Legarra
161 schema:givenName Andrés
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223466241.87
163 rdf:type schema:Person
164 sg:pub.10.1038/hdy.2013.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013905892
165 https://doi.org/10.1038/hdy.2013.13
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature08494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005147626
168 https://doi.org/10.1038/nature08494
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/ng.3034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028025360
171 https://doi.org/10.1038/ng.3034
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ng0508-489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000802607
174 https://doi.org/10.1038/ng0508-489
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nrg2146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022243201
177 https://doi.org/10.1038/nrg2146
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nrg795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017425948
180 https://doi.org/10.1038/nrg795
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1297-9686-33-3-209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045489495
183 https://doi.org/10.1186/1297-9686-33-3-209
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1297-9686-46-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019198414
186 https://doi.org/10.1186/1297-9686-46-41
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/1471-2164-15-246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017230219
189 https://doi.org/10.1186/1471-2164-15-246
190 rdf:type schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
192 https://doi.org/10.1002/bies.201300014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002532349
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.gde.2014.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004964282
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.ygeno.2009.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035482532
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1101/gr.083634.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019006318
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/1755-0998.12286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046238371
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.1755-0998.2012.03158.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013462041
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/jbg.12074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000908382
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/mec.12693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025200061
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1167936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010221272
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1371/journal.pgen.1000008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037949611
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pgen.1002685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039479788
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pone.0019379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005754650
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1534/genetics.108.094128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022389324
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1534/genetics.110.116590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052325582
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1534/genetics.111.135541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045699661
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1534/genetics.113.151753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003979530
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1534/genetics.114.168344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010647784
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2144/jun0207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075076543
231 rdf:type schema:CreativeWork
232 https://doi.org/10.3168/jds.2007-0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077537167
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
235 rdf:type schema:CreativeWork
236 https://doi.org/10.3168/jds.2008-1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885396
237 rdf:type schema:CreativeWork
238 https://doi.org/10.3168/jds.2008-1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683381
239 rdf:type schema:CreativeWork
240 https://doi.org/10.3168/jds.2008-1762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077900359
241 rdf:type schema:CreativeWork
242 https://doi.org/10.3168/jds.2012-5702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053191208
243 rdf:type schema:CreativeWork
244 https://doi.org/10.3168/jds.2013-7525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027758142
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.10689.36 schema:alternateName National University of Colombia
247 schema:name Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Barcelona, Bellaterra, Spain
248 Universidad Nacional de Colombia, Sede Medellín, Facultad de Ciencias Agrarias, Departamento de producción Animal, Medellín, Colombia
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
251 schema:name Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Barcelona, Bellaterra, Spain
252 Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Barcelona, Bellaterra, Spain
253 Institut Català de Recerca i Estudis Avançats (ICREA), Carrer de Lluís Companys 23, 08010, Barcelona, Spain
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...