Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Kathryn E Kemper, Coralie M Reich, Philip J Bowman, Christy J vander Jagt, Amanda J Chamberlain, Brett A Mason, Benjamin J Hayes, Michael E Goddard

ABSTRACT

BACKGROUND: Genomic selection is increasingly widely practised, particularly in dairy cattle. However, the accuracy of current predictions using GBLUP (genomic best linear unbiased prediction) decays rapidly across generations, and also as selection candidates become less related to the reference population. This is likely caused by the effects of causative mutations being dispersed across many SNPs (single nucleotide polymorphisms) that span large genomic intervals. In this paper, we hypothesise that the use of a nonlinear method (BayesR), combined with a multi-breed (Holstein/Jersey) reference population will map causative mutations with more precision than GBLUP and this, in turn, will increase the accuracy of genomic predictions for selection candidates that are less related to the reference animals. RESULTS: BayesR improved the across-breed prediction accuracy for Australian Red dairy cattle for five milk yield and composition traits by an average of 7% over the GBLUP approach (Australian Red animals were not included in the reference population). Using the multi-breed reference population with BayesR improved accuracy of prediction in Australian Red cattle by 2 - 5% compared to using BayesR with a single breed reference population. Inclusion of 8478 Holstein and 3917 Jersey cows in the reference population improved accuracy of predictions for these breeds by 4 and 5%. However, predictions for Holstein and Jersey cattle were similar using within-breed and multi-breed reference populations. We propose that the improvement in across-breed prediction achieved by BayesR with the multi-breed reference population is due to more precise mapping of quantitative trait loci (QTL), which was demonstrated for several regions. New candidate genes with functional links to milk synthesis were identified using differential gene expression in the mammary gland. CONCLUSIONS: QTL detection and genomic prediction are usually considered independently but persistence of genomic prediction accuracies across breeds requires accurate estimation of QTL effects. We show that accuracy of across-breed genomic predictions was higher with BayesR than with GBLUP and that BayesR mapped QTL more precisely. Further improvements of across-breed accuracy of genomic predictions and QTL mapping could be achieved by increasing the size of the reference population, including more breeds, and possibly by exploiting pleiotropic effects to improve mapping efficiency for QTL with small effects. More... »

PAGES

29

References to SciGraph publications

  • 2013-12. Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattlea in BMC GENOMICS
  • 2013-12. Comparison of molecular breeding values based on within- and across-breed training in beef cattle in GENETICS SELECTION EVOLUTION
  • 2010-12. The impact of genetic relationship information on genomic breeding values in German Holstein cattle in GENETICS SELECTION EVOLUTION
  • 2013-04. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions in GENOME BIOLOGY
  • 2009-06. Genomic selection: prediction of accuracy and maximisation of long term response in GENETICA
  • 2010-07. Common SNPs explain a large proportion of the heritability for human height in NATURE GENETICS
  • 2012-12. Inclusion of cow records in genomic evaluations and impact on bias due to preferential treatment in GENETICS SELECTION EVOLUTION
  • 2004-06. Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data in GENETICS SELECTION EVOLUTION
  • 2001-12. Prediction of identity by descent probabilities from marker-haplotypes in GENETICS SELECTION EVOLUTION
  • 2009-12. Deregressing estimated breeding values and weighting information for genomic regression analyses in GENETICS SELECTION EVOLUTION
  • 2014-12. Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle in BMC GENOMICS
  • 2012-12. Joint genomic evaluation of French dairy cattle breeds using multiple-trait models in GENETICS SELECTION EVOLUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12711-014-0074-4

    DOI

    http://dx.doi.org/10.1186/s12711-014-0074-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033592476

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25887988


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bayes Theorem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breeding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cattle", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Melbourne", 
              "id": "https://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 3052, Parkville, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kemper", 
            "givenName": "Kathryn E", 
            "id": "sg:person.01172453457.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172453457.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AgriBio", 
              "id": "https://www.grid.ac/institutes/grid.452283.a", 
              "name": [
                "Department of Environment and Primary Industries, AgriBio, 3086, Bundoora, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reich", 
            "givenName": "Coralie M", 
            "id": "sg:person.0674241763.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674241763.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AgriBio", 
              "id": "https://www.grid.ac/institutes/grid.452283.a", 
              "name": [
                "Department of Environment and Primary Industries, AgriBio, 3086, Bundoora, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bowman", 
            "givenName": "Philip J", 
            "id": "sg:person.01261246570.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261246570.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AgriBio", 
              "id": "https://www.grid.ac/institutes/grid.452283.a", 
              "name": [
                "Department of Environment and Primary Industries, AgriBio, 3086, Bundoora, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "vander Jagt", 
            "givenName": "Christy J", 
            "id": "sg:person.07557276413.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557276413.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AgriBio", 
              "id": "https://www.grid.ac/institutes/grid.452283.a", 
              "name": [
                "Department of Environment and Primary Industries, AgriBio, 3086, Bundoora, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chamberlain", 
            "givenName": "Amanda J", 
            "id": "sg:person.01145133535.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145133535.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AgriBio", 
              "id": "https://www.grid.ac/institutes/grid.452283.a", 
              "name": [
                "Department of Environment and Primary Industries, AgriBio, 3086, Bundoora, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mason", 
            "givenName": "Brett A", 
            "id": "sg:person.01176016105.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176016105.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "La Trobe University", 
              "id": "https://www.grid.ac/institutes/grid.1018.8", 
              "name": [
                "Department of Environment and Primary Industries, AgriBio, 3086, Bundoora, Australia", 
                "La Trobe University, 3086, Bundoora, Australia", 
                "Dairy Futures Co-operative Research Centre, 3086, Bundoora, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayes", 
            "givenName": "Benjamin J", 
            "id": "sg:person.01125625000.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125625000.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AgriBio", 
              "id": "https://www.grid.ac/institutes/grid.452283.a", 
              "name": [
                "Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 3052, Parkville, Australia", 
                "Department of Environment and Primary Industries, AgriBio, 3086, Bundoora, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goddard", 
            "givenName": "Michael E", 
            "id": "sg:person.0623730357.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623730357.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1297-9686-44-40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000596768", 
              "https://doi.org/10.1186/1297-9686-44-40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-44-39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002092673", 
              "https://doi.org/10.1186/1297-9686-44-39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2010-3866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002833261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003057333", 
              "https://doi.org/10.1186/1471-2164-15-62"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-41-55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004549609", 
              "https://doi.org/10.1186/1297-9686-41-55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-5006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005661831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-5006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005661831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-5006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005661831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.224202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005941767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1169588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008571755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009497006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-42-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009819360", 
              "https://doi.org/10.1186/1297-9686-42-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10709-008-9308-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011541525", 
              "https://doi.org/10.1007/s10709-008-9308-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013612567", 
              "https://doi.org/10.1186/1471-2164-14-730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2052.2006.01434.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013974939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2052.2006.01434.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013974939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0014726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014107365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-33-6-605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014305771", 
              "https://doi.org/10.1186/1297-9686-33-6-605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015057090", 
              "https://doi.org/10.1038/ng.608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015057090", 
              "https://doi.org/10.1038/ng.608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015459845", 
              "https://doi.org/10.1186/gb-2013-14-4-r36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0040711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018940458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023247882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2010-3786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024517301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0023157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024696749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-45-30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026435939", 
              "https://doi.org/10.1186/1297-9686-45-30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028487990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2008-1514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028885396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1001139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030488894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.084301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034530566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.084301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034530566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3806705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035976635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.116855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039215498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.116855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039215498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-36-3-261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045820510", 
              "https://doi.org/10.1186/1297-9686-36-3-261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-5019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048827920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/521987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052475645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2012-5702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053191208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1530/ror.0.0010001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067730812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2012-5593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070888572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2012-5827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070888686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(01)74713-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074988091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075238014", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2006-617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077464007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2006-617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077464007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2006-617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077464007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2007-0766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077636615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2007-0766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077636615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2007-0766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077636615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2010-3719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078388914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1079/9780851990002.0000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109469630"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "BACKGROUND: Genomic selection is increasingly widely practised, particularly in dairy cattle. However, the accuracy of current predictions using GBLUP (genomic best linear unbiased prediction) decays rapidly across generations, and also as selection candidates become less related to the reference population. This is likely caused by the effects of causative mutations being dispersed across many SNPs (single nucleotide polymorphisms) that span large genomic intervals. In this paper, we hypothesise that the use of a nonlinear method (BayesR), combined with a multi-breed (Holstein/Jersey) reference population will map causative mutations with more precision than GBLUP and this, in turn, will increase the accuracy of genomic predictions for selection candidates that are less related to the reference animals.\nRESULTS: BayesR improved the across-breed prediction accuracy for Australian Red dairy cattle for five milk yield and composition traits by an average of 7% over the GBLUP approach (Australian Red animals were not included in the reference population). Using the multi-breed reference population with BayesR improved accuracy of prediction in Australian Red cattle by 2 - 5% compared to using BayesR with a single breed reference population. Inclusion of 8478 Holstein and 3917 Jersey cows in the reference population improved accuracy of predictions for these breeds by 4 and 5%. However, predictions for Holstein and Jersey cattle were similar using within-breed and multi-breed reference populations. We propose that the improvement in across-breed prediction achieved by BayesR with the multi-breed reference population is due to more precise mapping of quantitative trait loci (QTL), which was demonstrated for several regions. New candidate genes with functional links to milk synthesis were identified using differential gene expression in the mammary gland.\nCONCLUSIONS: QTL detection and genomic prediction are usually considered independently but persistence of genomic prediction accuracies across breeds requires accurate estimation of QTL effects. We show that accuracy of across-breed genomic predictions was higher with BayesR than with GBLUP and that BayesR mapped QTL more precisely. Further improvements of across-breed accuracy of genomic predictions and QTL mapping could be achieved by increasing the size of the reference population, including more breeds, and possibly by exploiting pleiotropic effects to improve mapping efficiency for QTL with small effects.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12711-014-0074-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3578761", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1014139", 
            "issn": [
              "0999-193X", 
              "1297-9686"
            ], 
            "name": "Genetics Selection Evolution", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "name": "Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions", 
        "pagination": "29", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a005fe7656f83c18585f73d2742edd3dc951acab8e24e95a8de29178e17ca142"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25887988"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114088"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12711-014-0074-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033592476"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12711-014-0074-4", 
          "https://app.dimensions.ai/details/publication/pub.1033592476"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89822_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs12711-014-0074-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12711-014-0074-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12711-014-0074-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12711-014-0074-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12711-014-0074-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    297 TRIPLES      21 PREDICATES      79 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12711-014-0074-4 schema:about N26db5369f66e45f8972b5e9fde355e86
    2 N2f2a9822630a42f88efa22a1dc0eaaf4
    3 N9004367c3ac44ae7ad62c1dd27defa40
    4 N9acb41b863dd4fa39a4e6d009db0bfff
    5 N9cb951c46b1f439797cd675b07ff78e0
    6 Nbbca1cca44fc424d9217ea001471a691
    7 Nc9eac384060a43408becc65da591cdfd
    8 Ne7ba19e461dd45e390e38b2f6e697287
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N077ddfe768b24172bc992ab9d57c4268
    12 schema:citation sg:pub.10.1007/s10709-008-9308-0
    13 sg:pub.10.1038/ng.608
    14 sg:pub.10.1186/1297-9686-33-6-605
    15 sg:pub.10.1186/1297-9686-36-3-261
    16 sg:pub.10.1186/1297-9686-41-55
    17 sg:pub.10.1186/1297-9686-42-5
    18 sg:pub.10.1186/1297-9686-44-39
    19 sg:pub.10.1186/1297-9686-44-40
    20 sg:pub.10.1186/1297-9686-45-30
    21 sg:pub.10.1186/1471-2164-14-730
    22 sg:pub.10.1186/1471-2164-15-62
    23 sg:pub.10.1186/gb-2013-14-4-r36
    24 https://app.dimensions.ai/details/publication/pub.1074795580
    25 https://app.dimensions.ai/details/publication/pub.1075238014
    26 https://doi.org/10.1016/j.ajhg.2010.11.011
    27 https://doi.org/10.1079/9780851990002.0000
    28 https://doi.org/10.1086/521987
    29 https://doi.org/10.1093/bioinformatics/btp616
    30 https://doi.org/10.1101/gr.224202
    31 https://doi.org/10.1101/gr.3806705
    32 https://doi.org/10.1111/j.1365-2052.2006.01434.x
    33 https://doi.org/10.1126/science.1169588
    34 https://doi.org/10.1371/journal.pgen.1001139
    35 https://doi.org/10.1371/journal.pone.0014726
    36 https://doi.org/10.1371/journal.pone.0023157
    37 https://doi.org/10.1371/journal.pone.0040711
    38 https://doi.org/10.1530/ror.0.0010001
    39 https://doi.org/10.1534/genetics.107.084301
    40 https://doi.org/10.1534/genetics.110.116855
    41 https://doi.org/10.2527/jas.2012-5593
    42 https://doi.org/10.2527/jas.2012-5827
    43 https://doi.org/10.3168/jds.2006-617
    44 https://doi.org/10.3168/jds.2007-0766
    45 https://doi.org/10.3168/jds.2008-1514
    46 https://doi.org/10.3168/jds.2010-3719
    47 https://doi.org/10.3168/jds.2010-3786
    48 https://doi.org/10.3168/jds.2010-3866
    49 https://doi.org/10.3168/jds.2011-4481
    50 https://doi.org/10.3168/jds.2011-5006
    51 https://doi.org/10.3168/jds.2011-5019
    52 https://doi.org/10.3168/jds.2012-5702
    53 https://doi.org/10.3168/jds.s0022-0302(01)74713-3
    54 schema:datePublished 2015-12
    55 schema:datePublishedReg 2015-12-01
    56 schema:description BACKGROUND: Genomic selection is increasingly widely practised, particularly in dairy cattle. However, the accuracy of current predictions using GBLUP (genomic best linear unbiased prediction) decays rapidly across generations, and also as selection candidates become less related to the reference population. This is likely caused by the effects of causative mutations being dispersed across many SNPs (single nucleotide polymorphisms) that span large genomic intervals. In this paper, we hypothesise that the use of a nonlinear method (BayesR), combined with a multi-breed (Holstein/Jersey) reference population will map causative mutations with more precision than GBLUP and this, in turn, will increase the accuracy of genomic predictions for selection candidates that are less related to the reference animals. RESULTS: BayesR improved the across-breed prediction accuracy for Australian Red dairy cattle for five milk yield and composition traits by an average of 7% over the GBLUP approach (Australian Red animals were not included in the reference population). Using the multi-breed reference population with BayesR improved accuracy of prediction in Australian Red cattle by 2 - 5% compared to using BayesR with a single breed reference population. Inclusion of 8478 Holstein and 3917 Jersey cows in the reference population improved accuracy of predictions for these breeds by 4 and 5%. However, predictions for Holstein and Jersey cattle were similar using within-breed and multi-breed reference populations. We propose that the improvement in across-breed prediction achieved by BayesR with the multi-breed reference population is due to more precise mapping of quantitative trait loci (QTL), which was demonstrated for several regions. New candidate genes with functional links to milk synthesis were identified using differential gene expression in the mammary gland. CONCLUSIONS: QTL detection and genomic prediction are usually considered independently but persistence of genomic prediction accuracies across breeds requires accurate estimation of QTL effects. We show that accuracy of across-breed genomic predictions was higher with BayesR than with GBLUP and that BayesR mapped QTL more precisely. Further improvements of across-breed accuracy of genomic predictions and QTL mapping could be achieved by increasing the size of the reference population, including more breeds, and possibly by exploiting pleiotropic effects to improve mapping efficiency for QTL with small effects.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree true
    60 schema:isPartOf Nb95e797a1118418b8606da0636ac5248
    61 Ne9aef40b212b4f0a9c4ab498738ba924
    62 sg:journal.1014139
    63 schema:name Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions
    64 schema:pagination 29
    65 schema:productId N31ef580a69874d0287a22767d17ac3a0
    66 N46df9d5567d1464080594672f813db42
    67 N4701ffdfdbb5476ab87c2d50473961ba
    68 N8de7cdbd896149ceb9832a39f14b3172
    69 Nc70acf294e274ab692660362882dbcc0
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033592476
    71 https://doi.org/10.1186/s12711-014-0074-4
    72 schema:sdDatePublished 2019-04-11T10:02
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N4b0c37e4332449289a5b258ff6d6ed27
    75 schema:url http://link.springer.com/10.1186%2Fs12711-014-0074-4
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N077ddfe768b24172bc992ab9d57c4268 rdf:first sg:person.01172453457.50
    80 rdf:rest Nf479c08a739249be920a69e56b9dd447
    81 N26db5369f66e45f8972b5e9fde355e86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Cattle
    83 rdf:type schema:DefinedTerm
    84 N2f2a9822630a42f88efa22a1dc0eaaf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Animals
    86 rdf:type schema:DefinedTerm
    87 N312e691e7aa44e7999ea6d888e4f47e0 rdf:first sg:person.07557276413.37
    88 rdf:rest N8a7f91c40de743388bd70b80a5d0de0a
    89 N31ef580a69874d0287a22767d17ac3a0 schema:name nlm_unique_id
    90 schema:value 9114088
    91 rdf:type schema:PropertyValue
    92 N43cbcf0581744b91bf5c19d16118cfa6 rdf:first sg:person.01261246570.79
    93 rdf:rest N312e691e7aa44e7999ea6d888e4f47e0
    94 N46df9d5567d1464080594672f813db42 schema:name pubmed_id
    95 schema:value 25887988
    96 rdf:type schema:PropertyValue
    97 N4701ffdfdbb5476ab87c2d50473961ba schema:name readcube_id
    98 schema:value a005fe7656f83c18585f73d2742edd3dc951acab8e24e95a8de29178e17ca142
    99 rdf:type schema:PropertyValue
    100 N4b0c37e4332449289a5b258ff6d6ed27 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 N4c2614f6d4d34a2491953b6ac763e72c rdf:first sg:person.01176016105.04
    103 rdf:rest Ne18b3d0f08764ce6b750ad983eae95c8
    104 N8a7f91c40de743388bd70b80a5d0de0a rdf:first sg:person.01145133535.60
    105 rdf:rest N4c2614f6d4d34a2491953b6ac763e72c
    106 N8de7cdbd896149ceb9832a39f14b3172 schema:name doi
    107 schema:value 10.1186/s12711-014-0074-4
    108 rdf:type schema:PropertyValue
    109 N9004367c3ac44ae7ad62c1dd27defa40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Breeding
    111 rdf:type schema:DefinedTerm
    112 N9acb41b863dd4fa39a4e6d009db0bfff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Bayes Theorem
    114 rdf:type schema:DefinedTerm
    115 N9cb951c46b1f439797cd675b07ff78e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Phenotype
    117 rdf:type schema:DefinedTerm
    118 Na4da2ffd653a4c30bfdc1d31231e7aac rdf:first sg:person.0623730357.31
    119 rdf:rest rdf:nil
    120 Nb95e797a1118418b8606da0636ac5248 schema:volumeNumber 47
    121 rdf:type schema:PublicationVolume
    122 Nbbca1cca44fc424d9217ea001471a691 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Genomics
    124 rdf:type schema:DefinedTerm
    125 Nc70acf294e274ab692660362882dbcc0 schema:name dimensions_id
    126 schema:value pub.1033592476
    127 rdf:type schema:PropertyValue
    128 Nc9eac384060a43408becc65da591cdfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Quantitative Trait Loci
    130 rdf:type schema:DefinedTerm
    131 Ne18b3d0f08764ce6b750ad983eae95c8 rdf:first sg:person.01125625000.53
    132 rdf:rest Na4da2ffd653a4c30bfdc1d31231e7aac
    133 Ne7ba19e461dd45e390e38b2f6e697287 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Chromosome Mapping
    135 rdf:type schema:DefinedTerm
    136 Ne9aef40b212b4f0a9c4ab498738ba924 schema:issueNumber 1
    137 rdf:type schema:PublicationIssue
    138 Nf479c08a739249be920a69e56b9dd447 rdf:first sg:person.0674241763.04
    139 rdf:rest N43cbcf0581744b91bf5c19d16118cfa6
    140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Biological Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Genetics
    145 rdf:type schema:DefinedTerm
    146 sg:grant.3578761 http://pending.schema.org/fundedItem sg:pub.10.1186/s12711-014-0074-4
    147 rdf:type schema:MonetaryGrant
    148 sg:journal.1014139 schema:issn 0999-193X
    149 1297-9686
    150 schema:name Genetics Selection Evolution
    151 rdf:type schema:Periodical
    152 sg:person.01125625000.53 schema:affiliation https://www.grid.ac/institutes/grid.1018.8
    153 schema:familyName Hayes
    154 schema:givenName Benjamin J
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125625000.53
    156 rdf:type schema:Person
    157 sg:person.01145133535.60 schema:affiliation https://www.grid.ac/institutes/grid.452283.a
    158 schema:familyName Chamberlain
    159 schema:givenName Amanda J
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145133535.60
    161 rdf:type schema:Person
    162 sg:person.01172453457.50 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
    163 schema:familyName Kemper
    164 schema:givenName Kathryn E
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172453457.50
    166 rdf:type schema:Person
    167 sg:person.01176016105.04 schema:affiliation https://www.grid.ac/institutes/grid.452283.a
    168 schema:familyName Mason
    169 schema:givenName Brett A
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176016105.04
    171 rdf:type schema:Person
    172 sg:person.01261246570.79 schema:affiliation https://www.grid.ac/institutes/grid.452283.a
    173 schema:familyName Bowman
    174 schema:givenName Philip J
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261246570.79
    176 rdf:type schema:Person
    177 sg:person.0623730357.31 schema:affiliation https://www.grid.ac/institutes/grid.452283.a
    178 schema:familyName Goddard
    179 schema:givenName Michael E
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623730357.31
    181 rdf:type schema:Person
    182 sg:person.0674241763.04 schema:affiliation https://www.grid.ac/institutes/grid.452283.a
    183 schema:familyName Reich
    184 schema:givenName Coralie M
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674241763.04
    186 rdf:type schema:Person
    187 sg:person.07557276413.37 schema:affiliation https://www.grid.ac/institutes/grid.452283.a
    188 schema:familyName vander Jagt
    189 schema:givenName Christy J
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557276413.37
    191 rdf:type schema:Person
    192 sg:pub.10.1007/s10709-008-9308-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011541525
    193 https://doi.org/10.1007/s10709-008-9308-0
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ng.608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015057090
    196 https://doi.org/10.1038/ng.608
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1186/1297-9686-33-6-605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014305771
    199 https://doi.org/10.1186/1297-9686-33-6-605
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1186/1297-9686-36-3-261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045820510
    202 https://doi.org/10.1186/1297-9686-36-3-261
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1186/1297-9686-41-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004549609
    205 https://doi.org/10.1186/1297-9686-41-55
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1186/1297-9686-42-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819360
    208 https://doi.org/10.1186/1297-9686-42-5
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1186/1297-9686-44-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002092673
    211 https://doi.org/10.1186/1297-9686-44-39
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1186/1297-9686-44-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000596768
    214 https://doi.org/10.1186/1297-9686-44-40
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1186/1297-9686-45-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026435939
    217 https://doi.org/10.1186/1297-9686-45-30
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1186/1471-2164-14-730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013612567
    220 https://doi.org/10.1186/1471-2164-14-730
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1186/1471-2164-15-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003057333
    223 https://doi.org/10.1186/1471-2164-15-62
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
    226 https://doi.org/10.1186/gb-2013-14-4-r36
    227 rdf:type schema:CreativeWork
    228 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
    229 https://app.dimensions.ai/details/publication/pub.1075238014 schema:CreativeWork
    230 https://doi.org/10.1016/j.ajhg.2010.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497006
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1079/9780851990002.0000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109469630
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1086/521987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052475645
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1101/gr.224202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005941767
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1101/gr.3806705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035976635
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1111/j.1365-2052.2006.01434.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013974939
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1126/science.1169588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008571755
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1371/journal.pgen.1001139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030488894
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1371/journal.pone.0014726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014107365
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1371/journal.pone.0023157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024696749
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1371/journal.pone.0040711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018940458
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1530/ror.0.0010001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067730812
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1534/genetics.107.084301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034530566
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1534/genetics.110.116855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039215498
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.2527/jas.2012-5593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070888572
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.2527/jas.2012-5827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070888686
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.3168/jds.2006-617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077464007
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.3168/jds.2007-0766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077636615
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.3168/jds.2008-1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885396
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.3168/jds.2010-3719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078388914
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.3168/jds.2010-3786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024517301
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.3168/jds.2010-3866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002833261
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.3168/jds.2011-4481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028487990
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.3168/jds.2011-5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005661831
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.3168/jds.2011-5019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048827920
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.3168/jds.2012-5702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053191208
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.3168/jds.s0022-0302(01)74713-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074988091
    285 rdf:type schema:CreativeWork
    286 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
    287 schema:name Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 3052, Parkville, Australia
    288 rdf:type schema:Organization
    289 https://www.grid.ac/institutes/grid.1018.8 schema:alternateName La Trobe University
    290 schema:name Dairy Futures Co-operative Research Centre, 3086, Bundoora, Australia
    291 Department of Environment and Primary Industries, AgriBio, 3086, Bundoora, Australia
    292 La Trobe University, 3086, Bundoora, Australia
    293 rdf:type schema:Organization
    294 https://www.grid.ac/institutes/grid.452283.a schema:alternateName AgriBio
    295 schema:name Department of Environment and Primary Industries, AgriBio, 3086, Bundoora, Australia
    296 Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 3052, Parkville, Australia
    297 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...