Ontology type: schema:ScholarlyArticle Open Access: True
2021-10-24
AUTHORSAlexander P. Klapproth, Jan Schuemann, Stefan Stangl, Tianwu Xie, Wei Bo Li, Gabriele Multhoff
ABSTRACTBackgroundGold nanoparticles (AuNPs) are considered as promising agents to increase the radiosensitivity of tumor cells. However, the biological mechanisms of radiation enhancement effects of AuNPs are still not well understood. We present a multi-scale Monte Carlo simulation framework within TOPAS-nBio to investigate the increase of DNA damage due to the presence of AuNPs in mouse tumor models.MethodsA tumor was placed inside a voxel mouse model and irradiated with either 100-kVp or 200-kVp X-ray beams. Phase spaces were employed to transfer particles from the macroscopic (voxel) scale to the microscopic scale, which consists of a cell geometry including a detailed mouse DNA model. Radiosensitizing effects were calculated in the presence and absence of hybrid nanoparticles with a Fe2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Fe}_2\text{O}_3$$\end{document} core surrounded by a gold layer (AuFeNPs). To simulate DNA damage even for very small energy tracks, Geant4-DNA physics and chemistry models were used on microscopic scale.ResultsAn AuFeNP-induced enhancement of both dose and DNA strand breaks has been established for different scenarios. Produced chemical radicals including hydroxyl molecules, which were assumed to be responsible for DNA damage through chemical reactions, were found to be significantly increased. We further observed a dependency of the results on the location of the cells within the tumor for 200-kVp X-ray beams.ConclusionOur multi-scale approach allows to study irradiation-induced physical and chemical effects on cells. We showed a potential increase in cell radiosensitization caused by relatively small concentrations of AuFeNPs. Our new methodology allows the individual adjustment of parameters in each simulation step and therefore can be used for other studies investigating the radiosensitizing effects of AuFeNPs or AuNPs in living cells. More... »
PAGES27
http://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3
DOIhttp://dx.doi.org/10.1186/s12645-021-00099-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142142048
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Radiation Medicine, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health (GmbH), Munich, Germany",
"id": "http://www.grid.ac/institutes/grid.4567.0",
"name": [
"Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany",
"Institute of Radiation Medicine, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health (GmbH), Munich, Germany"
],
"type": "Organization"
},
"familyName": "Klapproth",
"givenName": "Alexander P.",
"id": "sg:person.016500562001.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500562001.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Harvard Medical School, Boston, MA, USA",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Physics Division, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA",
"Harvard Medical School, Boston, MA, USA"
],
"type": "Organization"
},
"familyName": "Schuemann",
"givenName": "Jan",
"id": "sg:person.01232740547.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232740547.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany",
"id": "http://www.grid.ac/institutes/grid.15474.33",
"name": [
"Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany"
],
"type": "Organization"
},
"familyName": "Stangl",
"givenName": "Stefan",
"id": "sg:person.01122200532.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122200532.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Radiation Medicine, Fudan University, Shanghai, China",
"id": "http://www.grid.ac/institutes/grid.8547.e",
"name": [
"Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland",
"Institute of Radiation Medicine, Fudan University, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Xie",
"givenName": "Tianwu",
"id": "sg:person.01014265105.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014265105.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Radiation Medicine, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health (GmbH), Munich, Germany",
"id": "http://www.grid.ac/institutes/grid.4567.0",
"name": [
"Institute of Radiation Medicine, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health (GmbH), Munich, Germany"
],
"type": "Organization"
},
"familyName": "Li",
"givenName": "Wei Bo",
"id": "sg:person.01267731401.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267731401.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany",
"id": "http://www.grid.ac/institutes/grid.15474.33",
"name": [
"Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany"
],
"type": "Organization"
},
"familyName": "Multhoff",
"givenName": "Gabriele",
"id": "sg:person.0621255730.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621255730.93"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/s41598-017-11851-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091790139",
"https://doi.org/10.1038/s41598-017-11851-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-017-13736-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092152876",
"https://doi.org/10.1038/s41598-017-13736-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrclinonc.2017.166",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092575453",
"https://doi.org/10.1038/nrclinonc.2017.166"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s004110050163",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027111239",
"https://doi.org/10.1007/s004110050163"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjd/e2018-90050-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105006103",
"https://doi.org/10.1140/epjd/e2018-90050-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12645-017-0026-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083409652",
"https://doi.org/10.1186/s12645-017-0026-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13014-019-1288-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1116072724",
"https://doi.org/10.1186/s13014-019-1288-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-24",
"datePublishedReg": "2021-10-24",
"description": "BackgroundGold nanoparticles (AuNPs) are considered as promising agents to increase the radiosensitivity of tumor cells. However, the biological mechanisms of radiation enhancement effects of AuNPs are still not well understood. We present a multi-scale Monte Carlo simulation framework within TOPAS-nBio to investigate the increase of DNA damage due to the presence of AuNPs in mouse tumor models.MethodsA tumor was placed inside a voxel mouse model and irradiated with either 100-kVp or 200-kVp X-ray beams. Phase spaces were employed to transfer particles from the macroscopic (voxel) scale to the microscopic scale, which consists of a cell geometry including a detailed mouse DNA model. Radiosensitizing effects were calculated in the presence and absence of hybrid nanoparticles with a Fe2O3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\text{Fe}_2\\text{O}_3$$\\end{document} core surrounded by a gold layer (AuFeNPs). To simulate DNA damage even for very small energy tracks, Geant4-DNA physics and chemistry models were used on microscopic scale.ResultsAn AuFeNP-induced enhancement of both dose and DNA strand breaks has been established for different scenarios. Produced chemical radicals including hydroxyl molecules, which were assumed to be responsible for DNA damage through chemical reactions, were found to be significantly increased. We further observed a dependency of the results on the location of the cells within the tumor for 200-kVp X-ray beams.ConclusionOur multi-scale approach allows to study irradiation-induced physical and chemical effects on cells. We showed a potential increase in cell radiosensitization caused by relatively small concentrations of AuFeNPs. Our new methodology allows the individual adjustment of parameters in each simulation step and therefore can be used for other studies investigating the radiosensitizing effects of AuFeNPs or AuNPs in living cells.",
"genre": "article",
"id": "sg:pub.10.1186/s12645-021-00099-3",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3932907",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1042272",
"issn": [
"1868-6958",
"1868-6966"
],
"name": "Cancer Nanotechnology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"keywords": [
"presence of AuNPs",
"hybrid nanoparticles",
"chemical radicals",
"TOPAS-nBio",
"chemical reactions",
"AuNPs",
"chemistry model",
"hydroxyl molecules",
"chemical effects",
"gold layer",
"nanoparticles",
"enhancement effect",
"living cells",
"small concentrations",
"microscopic scale",
"DNA model",
"radiation enhancement effect",
"nanoparticles-induced DNA damage",
"X-ray irradiation",
"macroscopic scale",
"radicals",
"molecules",
"reaction",
"irradiation",
"cell geometry",
"potential increase",
"multi-scale Monte Carlo simulations",
"presence",
"X-ray beam",
"particles",
"promising agent",
"new methodology",
"energy tracks",
"concentration",
"DNA damage",
"core",
"layer",
"geometry",
"DNA strand breaks",
"agents",
"enhancement",
"step",
"effect",
"strand breaks",
"Monte Carlo simulations",
"cells",
"mechanism",
"Carlo simulations",
"cell radiosensitization",
"mouse tumor models",
"multi-scale approach",
"increase",
"simulation step",
"tumor model",
"parameters",
"xenograft mouse model",
"tumor cells",
"methodology",
"absence",
"simulations",
"scale",
"breaks",
"biological mechanisms",
"physics",
"results",
"study",
"approach",
"radiosensitization",
"beam",
"framework",
"model",
"dependency",
"Monte Carlo simulation framework",
"damage",
"phase space",
"dose",
"location",
"space",
"simulation framework",
"mouse model",
"track",
"adjustment",
"tumors",
"different scenarios",
"scenarios",
"individual adjustment",
"radiosensitivity",
"voxel mouse model"
],
"name": "Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio",
"pagination": "27",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142142048"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s12645-021-00099-3"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s12645-021-00099-3",
"https://app.dimensions.ai/details/publication/pub.1142142048"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_880.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s12645-021-00099-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3'
This table displays all metadata directly associated to this object as RDF triples.
223 TRIPLES
22 PREDICATES
120 URIs
105 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/s12645-021-00099-3 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | N874fb109ed8248cfab8821c95acd7dae |
4 | ″ | schema:citation | sg:pub.10.1007/s004110050163 |
5 | ″ | ″ | sg:pub.10.1038/nrclinonc.2017.166 |
6 | ″ | ″ | sg:pub.10.1038/s41598-017-11851-4 |
7 | ″ | ″ | sg:pub.10.1038/s41598-017-13736-y |
8 | ″ | ″ | sg:pub.10.1140/epjd/e2018-90050-x |
9 | ″ | ″ | sg:pub.10.1186/s12645-017-0026-0 |
10 | ″ | ″ | sg:pub.10.1186/s13014-019-1288-y |
11 | ″ | schema:datePublished | 2021-10-24 |
12 | ″ | schema:datePublishedReg | 2021-10-24 |
13 | ″ | schema:description | BackgroundGold nanoparticles (AuNPs) are considered as promising agents to increase the radiosensitivity of tumor cells. However, the biological mechanisms of radiation enhancement effects of AuNPs are still not well understood. We present a multi-scale Monte Carlo simulation framework within TOPAS-nBio to investigate the increase of DNA damage due to the presence of AuNPs in mouse tumor models.MethodsA tumor was placed inside a voxel mouse model and irradiated with either 100-kVp or 200-kVp X-ray beams. Phase spaces were employed to transfer particles from the macroscopic (voxel) scale to the microscopic scale, which consists of a cell geometry including a detailed mouse DNA model. Radiosensitizing effects were calculated in the presence and absence of hybrid nanoparticles with a Fe2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Fe}_2\text{O}_3$$\end{document} core surrounded by a gold layer (AuFeNPs). To simulate DNA damage even for very small energy tracks, Geant4-DNA physics and chemistry models were used on microscopic scale.ResultsAn AuFeNP-induced enhancement of both dose and DNA strand breaks has been established for different scenarios. Produced chemical radicals including hydroxyl molecules, which were assumed to be responsible for DNA damage through chemical reactions, were found to be significantly increased. We further observed a dependency of the results on the location of the cells within the tumor for 200-kVp X-ray beams.ConclusionOur multi-scale approach allows to study irradiation-induced physical and chemical effects on cells. We showed a potential increase in cell radiosensitization caused by relatively small concentrations of AuFeNPs. Our new methodology allows the individual adjustment of parameters in each simulation step and therefore can be used for other studies investigating the radiosensitizing effects of AuFeNPs or AuNPs in living cells. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | true |
17 | ″ | schema:isPartOf | N26cb9595cda149ecb7d7daffc7d6c238 |
18 | ″ | ″ | N7a3ff360c1b64a8e8b84f176e6d08dd0 |
19 | ″ | ″ | sg:journal.1042272 |
20 | ″ | schema:keywords | AuNPs |
21 | ″ | ″ | Carlo simulations |
22 | ″ | ″ | DNA damage |
23 | ″ | ″ | DNA model |
24 | ″ | ″ | DNA strand breaks |
25 | ″ | ″ | Monte Carlo simulation framework |
26 | ″ | ″ | Monte Carlo simulations |
27 | ″ | ″ | TOPAS-nBio |
28 | ″ | ″ | X-ray beam |
29 | ″ | ″ | X-ray irradiation |
30 | ″ | ″ | absence |
31 | ″ | ″ | adjustment |
32 | ″ | ″ | agents |
33 | ″ | ″ | approach |
34 | ″ | ″ | beam |
35 | ″ | ″ | biological mechanisms |
36 | ″ | ″ | breaks |
37 | ″ | ″ | cell geometry |
38 | ″ | ″ | cell radiosensitization |
39 | ″ | ″ | cells |
40 | ″ | ″ | chemical effects |
41 | ″ | ″ | chemical radicals |
42 | ″ | ″ | chemical reactions |
43 | ″ | ″ | chemistry model |
44 | ″ | ″ | concentration |
45 | ″ | ″ | core |
46 | ″ | ″ | damage |
47 | ″ | ″ | dependency |
48 | ″ | ″ | different scenarios |
49 | ″ | ″ | dose |
50 | ″ | ″ | effect |
51 | ″ | ″ | energy tracks |
52 | ″ | ″ | enhancement |
53 | ″ | ″ | enhancement effect |
54 | ″ | ″ | framework |
55 | ″ | ″ | geometry |
56 | ″ | ″ | gold layer |
57 | ″ | ″ | hybrid nanoparticles |
58 | ″ | ″ | hydroxyl molecules |
59 | ″ | ″ | increase |
60 | ″ | ″ | individual adjustment |
61 | ″ | ″ | irradiation |
62 | ″ | ″ | layer |
63 | ″ | ″ | living cells |
64 | ″ | ″ | location |
65 | ″ | ″ | macroscopic scale |
66 | ″ | ″ | mechanism |
67 | ″ | ″ | methodology |
68 | ″ | ″ | microscopic scale |
69 | ″ | ″ | model |
70 | ″ | ″ | molecules |
71 | ″ | ″ | mouse model |
72 | ″ | ″ | mouse tumor models |
73 | ″ | ″ | multi-scale Monte Carlo simulations |
74 | ″ | ″ | multi-scale approach |
75 | ″ | ″ | nanoparticles |
76 | ″ | ″ | nanoparticles-induced DNA damage |
77 | ″ | ″ | new methodology |
78 | ″ | ″ | parameters |
79 | ″ | ″ | particles |
80 | ″ | ″ | phase space |
81 | ″ | ″ | physics |
82 | ″ | ″ | potential increase |
83 | ″ | ″ | presence |
84 | ″ | ″ | presence of AuNPs |
85 | ″ | ″ | promising agent |
86 | ″ | ″ | radiation enhancement effect |
87 | ″ | ″ | radicals |
88 | ″ | ″ | radiosensitivity |
89 | ″ | ″ | radiosensitization |
90 | ″ | ″ | reaction |
91 | ″ | ″ | results |
92 | ″ | ″ | scale |
93 | ″ | ″ | scenarios |
94 | ″ | ″ | simulation framework |
95 | ″ | ″ | simulation step |
96 | ″ | ″ | simulations |
97 | ″ | ″ | small concentrations |
98 | ″ | ″ | space |
99 | ″ | ″ | step |
100 | ″ | ″ | strand breaks |
101 | ″ | ″ | study |
102 | ″ | ″ | track |
103 | ″ | ″ | tumor cells |
104 | ″ | ″ | tumor model |
105 | ″ | ″ | tumors |
106 | ″ | ″ | voxel mouse model |
107 | ″ | ″ | xenograft mouse model |
108 | ″ | schema:name | Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio |
109 | ″ | schema:pagination | 27 |
110 | ″ | schema:productId | N5f2b505ea1144ccfa75c34968dc842f6 |
111 | ″ | ″ | Nb02640a826ce49aa86dce0b816baf93c |
112 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1142142048 |
113 | ″ | ″ | https://doi.org/10.1186/s12645-021-00099-3 |
114 | ″ | schema:sdDatePublished | 2022-05-10T10:28 |
115 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
116 | ″ | schema:sdPublisher | Nef96261b61854c7598bf283aefd3dd94 |
117 | ″ | schema:url | https://doi.org/10.1186/s12645-021-00099-3 |
118 | ″ | sgo:license | sg:explorer/license/ |
119 | ″ | sgo:sdDataset | articles |
120 | ″ | rdf:type | schema:ScholarlyArticle |
121 | N00919b23c9e24f78b305ae8510fc350a | rdf:first | sg:person.01267731401.39 |
122 | ″ | rdf:rest | N2aad4131ca57457da811b166c5322412 |
123 | N26cb9595cda149ecb7d7daffc7d6c238 | schema:volumeNumber | 12 |
124 | ″ | rdf:type | schema:PublicationVolume |
125 | N2aad4131ca57457da811b166c5322412 | rdf:first | sg:person.0621255730.93 |
126 | ″ | rdf:rest | rdf:nil |
127 | N580aaa8805ef4dea8d3f3b7d52c1b246 | rdf:first | sg:person.01232740547.31 |
128 | ″ | rdf:rest | N99909ac589ff46f6832bca67494f2b5c |
129 | N5f2b505ea1144ccfa75c34968dc842f6 | schema:name | dimensions_id |
130 | ″ | schema:value | pub.1142142048 |
131 | ″ | rdf:type | schema:PropertyValue |
132 | N7a3ff360c1b64a8e8b84f176e6d08dd0 | schema:issueNumber | 1 |
133 | ″ | rdf:type | schema:PublicationIssue |
134 | N874fb109ed8248cfab8821c95acd7dae | rdf:first | sg:person.016500562001.72 |
135 | ″ | rdf:rest | N580aaa8805ef4dea8d3f3b7d52c1b246 |
136 | N99909ac589ff46f6832bca67494f2b5c | rdf:first | sg:person.01122200532.09 |
137 | ″ | rdf:rest | Nc0079a2afa3a4035a375921105645076 |
138 | Nb02640a826ce49aa86dce0b816baf93c | schema:name | doi |
139 | ″ | schema:value | 10.1186/s12645-021-00099-3 |
140 | ″ | rdf:type | schema:PropertyValue |
141 | Nc0079a2afa3a4035a375921105645076 | rdf:first | sg:person.01014265105.80 |
142 | ″ | rdf:rest | N00919b23c9e24f78b305ae8510fc350a |
143 | Nef96261b61854c7598bf283aefd3dd94 | schema:name | Springer Nature - SN SciGraph project |
144 | ″ | rdf:type | schema:Organization |
145 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Chemical Sciences |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
149 | ″ | schema:name | Physical Chemistry (incl. Structural) |
150 | ″ | rdf:type | schema:DefinedTerm |
151 | sg:grant.3932907 | http://pending.schema.org/fundedItem | sg:pub.10.1186/s12645-021-00099-3 |
152 | ″ | rdf:type | schema:MonetaryGrant |
153 | sg:journal.1042272 | schema:issn | 1868-6958 |
154 | ″ | ″ | 1868-6966 |
155 | ″ | schema:name | Cancer Nanotechnology |
156 | ″ | schema:publisher | Springer Nature |
157 | ″ | rdf:type | schema:Periodical |
158 | sg:person.01014265105.80 | schema:affiliation | grid-institutes:grid.8547.e |
159 | ″ | schema:familyName | Xie |
160 | ″ | schema:givenName | Tianwu |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014265105.80 |
162 | ″ | rdf:type | schema:Person |
163 | sg:person.01122200532.09 | schema:affiliation | grid-institutes:grid.15474.33 |
164 | ″ | schema:familyName | Stangl |
165 | ″ | schema:givenName | Stefan |
166 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122200532.09 |
167 | ″ | rdf:type | schema:Person |
168 | sg:person.01232740547.31 | schema:affiliation | grid-institutes:grid.38142.3c |
169 | ″ | schema:familyName | Schuemann |
170 | ″ | schema:givenName | Jan |
171 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232740547.31 |
172 | ″ | rdf:type | schema:Person |
173 | sg:person.01267731401.39 | schema:affiliation | grid-institutes:grid.4567.0 |
174 | ″ | schema:familyName | Li |
175 | ″ | schema:givenName | Wei Bo |
176 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267731401.39 |
177 | ″ | rdf:type | schema:Person |
178 | sg:person.016500562001.72 | schema:affiliation | grid-institutes:grid.4567.0 |
179 | ″ | schema:familyName | Klapproth |
180 | ″ | schema:givenName | Alexander P. |
181 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500562001.72 |
182 | ″ | rdf:type | schema:Person |
183 | sg:person.0621255730.93 | schema:affiliation | grid-institutes:grid.15474.33 |
184 | ″ | schema:familyName | Multhoff |
185 | ″ | schema:givenName | Gabriele |
186 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621255730.93 |
187 | ″ | rdf:type | schema:Person |
188 | sg:pub.10.1007/s004110050163 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027111239 |
189 | ″ | ″ | https://doi.org/10.1007/s004110050163 |
190 | ″ | rdf:type | schema:CreativeWork |
191 | sg:pub.10.1038/nrclinonc.2017.166 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1092575453 |
192 | ″ | ″ | https://doi.org/10.1038/nrclinonc.2017.166 |
193 | ″ | rdf:type | schema:CreativeWork |
194 | sg:pub.10.1038/s41598-017-11851-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1091790139 |
195 | ″ | ″ | https://doi.org/10.1038/s41598-017-11851-4 |
196 | ″ | rdf:type | schema:CreativeWork |
197 | sg:pub.10.1038/s41598-017-13736-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1092152876 |
198 | ″ | ″ | https://doi.org/10.1038/s41598-017-13736-y |
199 | ″ | rdf:type | schema:CreativeWork |
200 | sg:pub.10.1140/epjd/e2018-90050-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1105006103 |
201 | ″ | ″ | https://doi.org/10.1140/epjd/e2018-90050-x |
202 | ″ | rdf:type | schema:CreativeWork |
203 | sg:pub.10.1186/s12645-017-0026-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1083409652 |
204 | ″ | ″ | https://doi.org/10.1186/s12645-017-0026-0 |
205 | ″ | rdf:type | schema:CreativeWork |
206 | sg:pub.10.1186/s13014-019-1288-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1116072724 |
207 | ″ | ″ | https://doi.org/10.1186/s13014-019-1288-y |
208 | ″ | rdf:type | schema:CreativeWork |
209 | grid-institutes:grid.15474.33 | schema:alternateName | Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany |
210 | ″ | schema:name | Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany |
211 | ″ | rdf:type | schema:Organization |
212 | grid-institutes:grid.38142.3c | schema:alternateName | Harvard Medical School, Boston, MA, USA |
213 | ″ | schema:name | Harvard Medical School, Boston, MA, USA |
214 | ″ | ″ | Physics Division, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA |
215 | ″ | rdf:type | schema:Organization |
216 | grid-institutes:grid.4567.0 | schema:alternateName | Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany |
217 | ″ | schema:name | Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany |
218 | ″ | ″ | Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany |
219 | ″ | rdf:type | schema:Organization |
220 | grid-institutes:grid.8547.e | schema:alternateName | Institute of Radiation Medicine, Fudan University, Shanghai, China |
221 | ″ | schema:name | Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland |
222 | ″ | ″ | Institute of Radiation Medicine, Fudan University, Shanghai, China |
223 | ″ | rdf:type | schema:Organization |