Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-24

AUTHORS

Alexander P. Klapproth, Jan Schuemann, Stefan Stangl, Tianwu Xie, Wei Bo Li, Gabriele Multhoff

ABSTRACT

BackgroundGold nanoparticles (AuNPs) are considered as promising agents to increase the radiosensitivity of tumor cells. However, the biological mechanisms of radiation enhancement effects of AuNPs are still not well understood. We present a multi-scale Monte Carlo simulation framework within TOPAS-nBio to investigate the increase of DNA damage due to the presence of AuNPs in mouse tumor models.MethodsA tumor was placed inside a voxel mouse model and irradiated with either 100-kVp or 200-kVp X-ray beams. Phase spaces were employed to transfer particles from the macroscopic (voxel) scale to the microscopic scale, which consists of a cell geometry including a detailed mouse DNA model. Radiosensitizing effects were calculated in the presence and absence of hybrid nanoparticles with a Fe2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Fe}_2\text{O}_3$$\end{document} core surrounded by a gold layer (AuFeNPs). To simulate DNA damage even for very small energy tracks, Geant4-DNA physics and chemistry models were used on microscopic scale.ResultsAn AuFeNP-induced enhancement of both dose and DNA strand breaks has been established for different scenarios. Produced chemical radicals including hydroxyl molecules, which were assumed to be responsible for DNA damage through chemical reactions, were found to be significantly increased. We further observed a dependency of the results on the location of the cells within the tumor for 200-kVp X-ray beams.ConclusionOur multi-scale approach allows to study irradiation-induced physical and chemical effects on cells. We showed a potential increase in cell radiosensitization caused by relatively small concentrations of AuFeNPs. Our new methodology allows the individual adjustment of parameters in each simulation step and therefore can be used for other studies investigating the radiosensitizing effects of AuFeNPs or AuNPs in living cells. More... »

PAGES

27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3

DOI

http://dx.doi.org/10.1186/s12645-021-00099-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142142048


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Radiation Medicine, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health (GmbH), Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany", 
            "Institute of Radiation Medicine, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health (GmbH), Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klapproth", 
        "givenName": "Alexander P.", 
        "id": "sg:person.016500562001.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500562001.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard Medical School, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Physics Division, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA", 
            "Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuemann", 
        "givenName": "Jan", 
        "id": "sg:person.01232740547.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232740547.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.15474.33", 
          "name": [
            "Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stangl", 
        "givenName": "Stefan", 
        "id": "sg:person.01122200532.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122200532.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiation Medicine, Fudan University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland", 
            "Institute of Radiation Medicine, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Tianwu", 
        "id": "sg:person.01014265105.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014265105.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiation Medicine, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health (GmbH), Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Radiation Medicine, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health (GmbH), Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wei Bo", 
        "id": "sg:person.01267731401.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267731401.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.15474.33", 
          "name": [
            "Center for Translational Cancer Research Technische Universit\u00e4t M\u00fcnchen (TranslaTUM), Klinikum rechts der Isar, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Multhoff", 
        "givenName": "Gabriele", 
        "id": "sg:person.0621255730.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621255730.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-017-11851-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091790139", 
          "https://doi.org/10.1038/s41598-017-11851-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-13736-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092152876", 
          "https://doi.org/10.1038/s41598-017-13736-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2017.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092575453", 
          "https://doi.org/10.1038/nrclinonc.2017.166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004110050163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027111239", 
          "https://doi.org/10.1007/s004110050163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2018-90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105006103", 
          "https://doi.org/10.1140/epjd/e2018-90050-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12645-017-0026-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083409652", 
          "https://doi.org/10.1186/s12645-017-0026-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-019-1288-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1116072724", 
          "https://doi.org/10.1186/s13014-019-1288-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-24", 
    "datePublishedReg": "2021-10-24", 
    "description": "BackgroundGold nanoparticles (AuNPs) are considered as promising agents to increase the radiosensitivity of tumor cells. However, the biological mechanisms of radiation enhancement effects of AuNPs are still not well understood. We present a multi-scale Monte Carlo simulation framework within TOPAS-nBio to investigate the increase of DNA damage due to the presence of AuNPs in mouse tumor models.MethodsA tumor was placed inside a voxel mouse model and irradiated with either 100-kVp or 200-kVp X-ray beams. Phase spaces were employed to transfer particles from the macroscopic (voxel) scale to the microscopic scale, which consists of a cell geometry including a detailed mouse DNA model. Radiosensitizing effects were calculated in the presence and absence of hybrid nanoparticles with a Fe2O3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\text{Fe}_2\\text{O}_3$$\\end{document} core surrounded by a gold layer (AuFeNPs). To simulate DNA damage even for very small energy tracks, Geant4-DNA physics and chemistry models were used on microscopic scale.ResultsAn AuFeNP-induced enhancement of both dose and DNA strand breaks has been established for different scenarios. Produced chemical radicals including hydroxyl molecules, which were assumed to be responsible for DNA damage through chemical reactions, were found to be significantly increased. We further observed a dependency of the results on the location of the cells within the tumor for 200-kVp X-ray beams.ConclusionOur multi-scale approach allows to study irradiation-induced physical and chemical effects on cells. We showed a potential increase in cell radiosensitization caused by relatively small concentrations of AuFeNPs. Our new methodology allows the individual adjustment of parameters in each simulation step and therefore can be used for other studies investigating the radiosensitizing effects of AuFeNPs or AuNPs in living cells.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12645-021-00099-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3932907", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042272", 
        "issn": [
          "1868-6958", 
          "1868-6966"
        ], 
        "name": "Cancer Nanotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "presence of AuNPs", 
      "hybrid nanoparticles", 
      "chemical radicals", 
      "TOPAS-nBio", 
      "chemical reactions", 
      "AuNPs", 
      "chemistry model", 
      "hydroxyl molecules", 
      "chemical effects", 
      "gold layer", 
      "nanoparticles", 
      "enhancement effect", 
      "living cells", 
      "small concentrations", 
      "microscopic scale", 
      "DNA model", 
      "radiation enhancement effect", 
      "nanoparticles-induced DNA damage", 
      "X-ray irradiation", 
      "macroscopic scale", 
      "radicals", 
      "molecules", 
      "reaction", 
      "irradiation", 
      "cell geometry", 
      "potential increase", 
      "multi-scale Monte Carlo simulations", 
      "presence", 
      "X-ray beam", 
      "particles", 
      "promising agent", 
      "new methodology", 
      "energy tracks", 
      "concentration", 
      "DNA damage", 
      "core", 
      "layer", 
      "geometry", 
      "DNA strand breaks", 
      "agents", 
      "enhancement", 
      "step", 
      "effect", 
      "strand breaks", 
      "Monte Carlo simulations", 
      "cells", 
      "mechanism", 
      "Carlo simulations", 
      "cell radiosensitization", 
      "mouse tumor models", 
      "multi-scale approach", 
      "increase", 
      "simulation step", 
      "tumor model", 
      "parameters", 
      "xenograft mouse model", 
      "tumor cells", 
      "methodology", 
      "absence", 
      "simulations", 
      "scale", 
      "breaks", 
      "biological mechanisms", 
      "physics", 
      "results", 
      "study", 
      "approach", 
      "radiosensitization", 
      "beam", 
      "framework", 
      "model", 
      "dependency", 
      "Monte Carlo simulation framework", 
      "damage", 
      "phase space", 
      "dose", 
      "location", 
      "space", 
      "simulation framework", 
      "mouse model", 
      "track", 
      "adjustment", 
      "tumors", 
      "different scenarios", 
      "scenarios", 
      "individual adjustment", 
      "radiosensitivity", 
      "voxel mouse model"
    ], 
    "name": "Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio", 
    "pagination": "27", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142142048"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12645-021-00099-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12645-021-00099-3", 
      "https://app.dimensions.ai/details/publication/pub.1142142048"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_880.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12645-021-00099-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00099-3'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      22 PREDICATES      120 URIs      105 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12645-021-00099-3 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N874fb109ed8248cfab8821c95acd7dae
4 schema:citation sg:pub.10.1007/s004110050163
5 sg:pub.10.1038/nrclinonc.2017.166
6 sg:pub.10.1038/s41598-017-11851-4
7 sg:pub.10.1038/s41598-017-13736-y
8 sg:pub.10.1140/epjd/e2018-90050-x
9 sg:pub.10.1186/s12645-017-0026-0
10 sg:pub.10.1186/s13014-019-1288-y
11 schema:datePublished 2021-10-24
12 schema:datePublishedReg 2021-10-24
13 schema:description BackgroundGold nanoparticles (AuNPs) are considered as promising agents to increase the radiosensitivity of tumor cells. However, the biological mechanisms of radiation enhancement effects of AuNPs are still not well understood. We present a multi-scale Monte Carlo simulation framework within TOPAS-nBio to investigate the increase of DNA damage due to the presence of AuNPs in mouse tumor models.MethodsA tumor was placed inside a voxel mouse model and irradiated with either 100-kVp or 200-kVp X-ray beams. Phase spaces were employed to transfer particles from the macroscopic (voxel) scale to the microscopic scale, which consists of a cell geometry including a detailed mouse DNA model. Radiosensitizing effects were calculated in the presence and absence of hybrid nanoparticles with a Fe2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Fe}_2\text{O}_3$$\end{document} core surrounded by a gold layer (AuFeNPs). To simulate DNA damage even for very small energy tracks, Geant4-DNA physics and chemistry models were used on microscopic scale.ResultsAn AuFeNP-induced enhancement of both dose and DNA strand breaks has been established for different scenarios. Produced chemical radicals including hydroxyl molecules, which were assumed to be responsible for DNA damage through chemical reactions, were found to be significantly increased. We further observed a dependency of the results on the location of the cells within the tumor for 200-kVp X-ray beams.ConclusionOur multi-scale approach allows to study irradiation-induced physical and chemical effects on cells. We showed a potential increase in cell radiosensitization caused by relatively small concentrations of AuFeNPs. Our new methodology allows the individual adjustment of parameters in each simulation step and therefore can be used for other studies investigating the radiosensitizing effects of AuFeNPs or AuNPs in living cells.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N26cb9595cda149ecb7d7daffc7d6c238
18 N7a3ff360c1b64a8e8b84f176e6d08dd0
19 sg:journal.1042272
20 schema:keywords AuNPs
21 Carlo simulations
22 DNA damage
23 DNA model
24 DNA strand breaks
25 Monte Carlo simulation framework
26 Monte Carlo simulations
27 TOPAS-nBio
28 X-ray beam
29 X-ray irradiation
30 absence
31 adjustment
32 agents
33 approach
34 beam
35 biological mechanisms
36 breaks
37 cell geometry
38 cell radiosensitization
39 cells
40 chemical effects
41 chemical radicals
42 chemical reactions
43 chemistry model
44 concentration
45 core
46 damage
47 dependency
48 different scenarios
49 dose
50 effect
51 energy tracks
52 enhancement
53 enhancement effect
54 framework
55 geometry
56 gold layer
57 hybrid nanoparticles
58 hydroxyl molecules
59 increase
60 individual adjustment
61 irradiation
62 layer
63 living cells
64 location
65 macroscopic scale
66 mechanism
67 methodology
68 microscopic scale
69 model
70 molecules
71 mouse model
72 mouse tumor models
73 multi-scale Monte Carlo simulations
74 multi-scale approach
75 nanoparticles
76 nanoparticles-induced DNA damage
77 new methodology
78 parameters
79 particles
80 phase space
81 physics
82 potential increase
83 presence
84 presence of AuNPs
85 promising agent
86 radiation enhancement effect
87 radicals
88 radiosensitivity
89 radiosensitization
90 reaction
91 results
92 scale
93 scenarios
94 simulation framework
95 simulation step
96 simulations
97 small concentrations
98 space
99 step
100 strand breaks
101 study
102 track
103 tumor cells
104 tumor model
105 tumors
106 voxel mouse model
107 xenograft mouse model
108 schema:name Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio
109 schema:pagination 27
110 schema:productId N5f2b505ea1144ccfa75c34968dc842f6
111 Nb02640a826ce49aa86dce0b816baf93c
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142142048
113 https://doi.org/10.1186/s12645-021-00099-3
114 schema:sdDatePublished 2022-05-10T10:28
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher Nef96261b61854c7598bf283aefd3dd94
117 schema:url https://doi.org/10.1186/s12645-021-00099-3
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N00919b23c9e24f78b305ae8510fc350a rdf:first sg:person.01267731401.39
122 rdf:rest N2aad4131ca57457da811b166c5322412
123 N26cb9595cda149ecb7d7daffc7d6c238 schema:volumeNumber 12
124 rdf:type schema:PublicationVolume
125 N2aad4131ca57457da811b166c5322412 rdf:first sg:person.0621255730.93
126 rdf:rest rdf:nil
127 N580aaa8805ef4dea8d3f3b7d52c1b246 rdf:first sg:person.01232740547.31
128 rdf:rest N99909ac589ff46f6832bca67494f2b5c
129 N5f2b505ea1144ccfa75c34968dc842f6 schema:name dimensions_id
130 schema:value pub.1142142048
131 rdf:type schema:PropertyValue
132 N7a3ff360c1b64a8e8b84f176e6d08dd0 schema:issueNumber 1
133 rdf:type schema:PublicationIssue
134 N874fb109ed8248cfab8821c95acd7dae rdf:first sg:person.016500562001.72
135 rdf:rest N580aaa8805ef4dea8d3f3b7d52c1b246
136 N99909ac589ff46f6832bca67494f2b5c rdf:first sg:person.01122200532.09
137 rdf:rest Nc0079a2afa3a4035a375921105645076
138 Nb02640a826ce49aa86dce0b816baf93c schema:name doi
139 schema:value 10.1186/s12645-021-00099-3
140 rdf:type schema:PropertyValue
141 Nc0079a2afa3a4035a375921105645076 rdf:first sg:person.01014265105.80
142 rdf:rest N00919b23c9e24f78b305ae8510fc350a
143 Nef96261b61854c7598bf283aefd3dd94 schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
146 schema:name Chemical Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
149 schema:name Physical Chemistry (incl. Structural)
150 rdf:type schema:DefinedTerm
151 sg:grant.3932907 http://pending.schema.org/fundedItem sg:pub.10.1186/s12645-021-00099-3
152 rdf:type schema:MonetaryGrant
153 sg:journal.1042272 schema:issn 1868-6958
154 1868-6966
155 schema:name Cancer Nanotechnology
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01014265105.80 schema:affiliation grid-institutes:grid.8547.e
159 schema:familyName Xie
160 schema:givenName Tianwu
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014265105.80
162 rdf:type schema:Person
163 sg:person.01122200532.09 schema:affiliation grid-institutes:grid.15474.33
164 schema:familyName Stangl
165 schema:givenName Stefan
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122200532.09
167 rdf:type schema:Person
168 sg:person.01232740547.31 schema:affiliation grid-institutes:grid.38142.3c
169 schema:familyName Schuemann
170 schema:givenName Jan
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232740547.31
172 rdf:type schema:Person
173 sg:person.01267731401.39 schema:affiliation grid-institutes:grid.4567.0
174 schema:familyName Li
175 schema:givenName Wei Bo
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267731401.39
177 rdf:type schema:Person
178 sg:person.016500562001.72 schema:affiliation grid-institutes:grid.4567.0
179 schema:familyName Klapproth
180 schema:givenName Alexander P.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500562001.72
182 rdf:type schema:Person
183 sg:person.0621255730.93 schema:affiliation grid-institutes:grid.15474.33
184 schema:familyName Multhoff
185 schema:givenName Gabriele
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621255730.93
187 rdf:type schema:Person
188 sg:pub.10.1007/s004110050163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027111239
189 https://doi.org/10.1007/s004110050163
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrclinonc.2017.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092575453
192 https://doi.org/10.1038/nrclinonc.2017.166
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/s41598-017-11851-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091790139
195 https://doi.org/10.1038/s41598-017-11851-4
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/s41598-017-13736-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152876
198 https://doi.org/10.1038/s41598-017-13736-y
199 rdf:type schema:CreativeWork
200 sg:pub.10.1140/epjd/e2018-90050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1105006103
201 https://doi.org/10.1140/epjd/e2018-90050-x
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/s12645-017-0026-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083409652
204 https://doi.org/10.1186/s12645-017-0026-0
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/s13014-019-1288-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1116072724
207 https://doi.org/10.1186/s13014-019-1288-y
208 rdf:type schema:CreativeWork
209 grid-institutes:grid.15474.33 schema:alternateName Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany
210 schema:name Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany
211 rdf:type schema:Organization
212 grid-institutes:grid.38142.3c schema:alternateName Harvard Medical School, Boston, MA, USA
213 schema:name Harvard Medical School, Boston, MA, USA
214 Physics Division, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
215 rdf:type schema:Organization
216 grid-institutes:grid.4567.0 schema:alternateName Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
217 schema:name Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany
218 Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
219 rdf:type schema:Organization
220 grid-institutes:grid.8547.e schema:alternateName Institute of Radiation Medicine, Fudan University, Shanghai, China
221 schema:name Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
222 Institute of Radiation Medicine, Fudan University, Shanghai, China
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...