Emodin-loaded polymer-lipid hybrid nanoparticles enhance the sensitivity of breast cancer to doxorubicin by inhibiting epithelial–mesenchymal transition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-08-11

AUTHORS

Tengteng Zou, Meng Lan, Fengjie Liu, Lihong Li, Tiange Cai, Huaqin Tian, Yu Cai

ABSTRACT

BackgroundThe role of epithelial–mesenchymal transition (EMT) involved in breast cancer metastasis and chemoresistance has been increasingly recognized. However, it is necessary to search for more effective strategies to inhibit EMT thereby increase the sensitivity of breast cancer cells to chemotherapy drugs. Emodin has a potential in overcoming tumor drug resistance and restraining the development of EMT, but the poor internalization into breast cancer cells limited the application.ResultsMCF-7/ADR cells have more EMT characteristics than MCF-7 cell. EMT in MCF-7/ADR cells promotes the development of drug resistance via apoptosis resistance and facilitating the expression of P-gp. The anti-cancer effect of DOX enhanced by the decreasing of drug resistance protein P-gp and apoptosis-related proteins after EMT inhibited in MCF-7/ADR cells. E-PLNs increase the cellular uptake of EMO and restore DOX sensitivity in MCF-7/ADR cells by inhibiting EMT.ConclusionE-PLNs inhibit EMT to enhance the sensitivity of breast cancer to DOX. The combination of E-PLNs and DOX can improve the efficacy of DOX in the treatment of breast cancer, which provides a new method to prevent or delay clinical drug resistance. More... »

PAGES

22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12645-021-00093-9

DOI

http://dx.doi.org/10.1186/s12645-021-00093-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140356503


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Pharmacy, Jinan University, 510632, Guangzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "College of Pharmacy, Jinan University, 510632, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Tengteng", 
        "id": "sg:person.011742331011.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011742331011.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Pharmacy, Jinan University, 510632, Guangzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "College of Pharmacy, Jinan University, 510632, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lan", 
        "givenName": "Meng", 
        "id": "sg:person.010347370011.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010347370011.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Pharmacy, Jinan University, 510632, Guangzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "College of Pharmacy, Jinan University, 510632, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Fengjie", 
        "id": "sg:person.010706222347.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010706222347.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Pharmacy, Jinan University, 510632, Guangzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "College of Pharmacy, Jinan University, 510632, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lihong", 
        "id": "sg:person.016613713147.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016613713147.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Life Sciences, Liaoning University, 110036, Shenyang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411356.4", 
          "name": [
            "College of Life Sciences, Liaoning University, 110036, Shenyang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Tiange", 
        "id": "sg:person.01004436276.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004436276.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Foshan Hospital of Traditional Chinese Medicine, 528000, Foshan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.490148.0", 
          "name": [
            "Foshan Hospital of Traditional Chinese Medicine, 528000, Foshan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Huaqin", 
        "id": "sg:person.015442170213.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442170213.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, 510632, Guangzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "College of Pharmacy, Jinan University, 510632, Guangzhou, People\u2019s Republic of China", 
            "Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, 510632, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Yu", 
        "id": "sg:person.01361036153.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361036153.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10637-014-0192-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013660039", 
          "https://doi.org/10.1007/s10637-014-0192-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11010-018-3346-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103227102", 
          "https://doi.org/10.1007/s11010-018-3346-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2013.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040662982", 
          "https://doi.org/10.1038/onc.2013.57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/cr.2009.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004224732", 
          "https://doi.org/10.1038/cr.2009.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5876-10-s1-s7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041097580", 
          "https://doi.org/10.1186/1479-5876-10-s1-s7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-08-11", 
    "datePublishedReg": "2021-08-11", 
    "description": "BackgroundThe role of epithelial\u2013mesenchymal transition (EMT) involved in breast cancer metastasis and chemoresistance has been increasingly recognized. However, it is necessary to search for more effective strategies to inhibit EMT thereby increase the sensitivity of breast cancer cells to chemotherapy drugs. Emodin has a potential in overcoming tumor drug resistance and restraining the development of EMT, but the poor internalization into breast cancer cells limited the application.ResultsMCF-7/ADR cells have more EMT characteristics than MCF-7 cell. EMT in MCF-7/ADR cells promotes the development of drug resistance via apoptosis resistance and facilitating the expression of P-gp. The anti-cancer effect of DOX enhanced by the decreasing of drug resistance protein P-gp and apoptosis-related proteins after EMT inhibited in MCF-7/ADR cells. E-PLNs increase the cellular uptake of EMO and restore DOX sensitivity in MCF-7/ADR cells by inhibiting EMT.ConclusionE-PLNs inhibit EMT to enhance the sensitivity of breast cancer to DOX. The combination of E-PLNs and DOX can improve the efficacy of DOX in the treatment of breast cancer, which provides a new method to prevent or delay clinical drug resistance.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12645-021-00093-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042272", 
        "issn": [
          "1868-6958", 
          "1868-6966"
        ], 
        "name": "Cancer Nanotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "epithelial-mesenchymal transition", 
      "MCF-7/ADR cells", 
      "breast cancer", 
      "breast cancer cells", 
      "ADR cells", 
      "drug resistance", 
      "P-gp", 
      "cancer cells", 
      "development of EMT", 
      "breast cancer metastasis", 
      "clinical drug resistance", 
      "anti-cancer effects", 
      "protein P-gp", 
      "apoptosis-related proteins", 
      "tumor drug resistance", 
      "MCF-7 cells", 
      "DOX sensitivity", 
      "chemotherapy drugs", 
      "EMT characteristics", 
      "efficacy of Dox", 
      "more effective strategies", 
      "cancer metastasis", 
      "cancer", 
      "poor internalization", 
      "apoptosis resistance", 
      "polymer-lipid hybrid nanoparticles", 
      "cells", 
      "DOX", 
      "cellular uptake", 
      "metastasis", 
      "effective strategy", 
      "chemoresistance", 
      "drugs", 
      "sensitivity", 
      "efficacy", 
      "doxorubicin", 
      "treatment", 
      "resistance", 
      "emodin", 
      "expression", 
      "uptake", 
      "internalization", 
      "development", 
      "protein", 
      "role", 
      "effect", 
      "combination", 
      "strategies", 
      "potential", 
      "characteristics", 
      "method", 
      "EMO", 
      "new method", 
      "decreasing", 
      "transition", 
      "hybrid nanoparticles", 
      "applications", 
      "nanoparticles"
    ], 
    "name": "Emodin-loaded polymer-lipid hybrid nanoparticles enhance the sensitivity of breast cancer to doxorubicin by inhibiting epithelial\u2013mesenchymal transition", 
    "pagination": "22", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140356503"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12645-021-00093-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12645-021-00093-9", 
      "https://app.dimensions.ai/details/publication/pub.1140356503"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_883.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12645-021-00093-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00093-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00093-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00093-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00093-9'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      90 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12645-021-00093-9 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 anzsrc-for:11
4 anzsrc-for:1112
5 schema:author N72671e0924f54eac9c890540dc487a7b
6 schema:citation sg:pub.10.1007/s10637-014-0192-4
7 sg:pub.10.1007/s11010-018-3346-4
8 sg:pub.10.1038/cr.2009.5
9 sg:pub.10.1038/onc.2013.57
10 sg:pub.10.1186/1479-5876-10-s1-s7
11 schema:datePublished 2021-08-11
12 schema:datePublishedReg 2021-08-11
13 schema:description BackgroundThe role of epithelial–mesenchymal transition (EMT) involved in breast cancer metastasis and chemoresistance has been increasingly recognized. However, it is necessary to search for more effective strategies to inhibit EMT thereby increase the sensitivity of breast cancer cells to chemotherapy drugs. Emodin has a potential in overcoming tumor drug resistance and restraining the development of EMT, but the poor internalization into breast cancer cells limited the application.ResultsMCF-7/ADR cells have more EMT characteristics than MCF-7 cell. EMT in MCF-7/ADR cells promotes the development of drug resistance via apoptosis resistance and facilitating the expression of P-gp. The anti-cancer effect of DOX enhanced by the decreasing of drug resistance protein P-gp and apoptosis-related proteins after EMT inhibited in MCF-7/ADR cells. E-PLNs increase the cellular uptake of EMO and restore DOX sensitivity in MCF-7/ADR cells by inhibiting EMT.ConclusionE-PLNs inhibit EMT to enhance the sensitivity of breast cancer to DOX. The combination of E-PLNs and DOX can improve the efficacy of DOX in the treatment of breast cancer, which provides a new method to prevent or delay clinical drug resistance.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Nc11e1344021a4c3193443da22f89841e
18 Ne7455b0671494780aba3977a35705f6d
19 sg:journal.1042272
20 schema:keywords ADR cells
21 DOX
22 DOX sensitivity
23 EMO
24 EMT characteristics
25 MCF-7 cells
26 MCF-7/ADR cells
27 P-gp
28 anti-cancer effects
29 apoptosis resistance
30 apoptosis-related proteins
31 applications
32 breast cancer
33 breast cancer cells
34 breast cancer metastasis
35 cancer
36 cancer cells
37 cancer metastasis
38 cells
39 cellular uptake
40 characteristics
41 chemoresistance
42 chemotherapy drugs
43 clinical drug resistance
44 combination
45 decreasing
46 development
47 development of EMT
48 doxorubicin
49 drug resistance
50 drugs
51 effect
52 effective strategy
53 efficacy
54 efficacy of Dox
55 emodin
56 epithelial-mesenchymal transition
57 expression
58 hybrid nanoparticles
59 internalization
60 metastasis
61 method
62 more effective strategies
63 nanoparticles
64 new method
65 polymer-lipid hybrid nanoparticles
66 poor internalization
67 potential
68 protein
69 protein P-gp
70 resistance
71 role
72 sensitivity
73 strategies
74 transition
75 treatment
76 tumor drug resistance
77 uptake
78 schema:name Emodin-loaded polymer-lipid hybrid nanoparticles enhance the sensitivity of breast cancer to doxorubicin by inhibiting epithelial–mesenchymal transition
79 schema:pagination 22
80 schema:productId N75887519083046f7a42a5bb805025b7e
81 N909436636dc941b99e52e003a4a97753
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140356503
83 https://doi.org/10.1186/s12645-021-00093-9
84 schema:sdDatePublished 2022-05-10T10:29
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N159ad96d4e8d49388c0cf9ba52350697
87 schema:url https://doi.org/10.1186/s12645-021-00093-9
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N159ad96d4e8d49388c0cf9ba52350697 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N3a154315f29d4ac98cdf743421a6cbbd rdf:first sg:person.01361036153.77
94 rdf:rest rdf:nil
95 N3ea1e81437b54404ae48bcd795581da6 rdf:first sg:person.010347370011.43
96 rdf:rest N6a791d39a07e48c98cfae5f68512f6b9
97 N6a791d39a07e48c98cfae5f68512f6b9 rdf:first sg:person.010706222347.40
98 rdf:rest Nc9d0dfa73f1a41d894c7cd1446e1a3b3
99 N72671e0924f54eac9c890540dc487a7b rdf:first sg:person.011742331011.40
100 rdf:rest N3ea1e81437b54404ae48bcd795581da6
101 N75887519083046f7a42a5bb805025b7e schema:name dimensions_id
102 schema:value pub.1140356503
103 rdf:type schema:PropertyValue
104 N909436636dc941b99e52e003a4a97753 schema:name doi
105 schema:value 10.1186/s12645-021-00093-9
106 rdf:type schema:PropertyValue
107 Nb07232d5971740edadbb93c81ab14f18 rdf:first sg:person.015442170213.23
108 rdf:rest N3a154315f29d4ac98cdf743421a6cbbd
109 Nc11e1344021a4c3193443da22f89841e schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 Nc9d0dfa73f1a41d894c7cd1446e1a3b3 rdf:first sg:person.016613713147.01
112 rdf:rest Nf97f44ddf5354431b0f25d4ac79f2866
113 Ne7455b0671494780aba3977a35705f6d schema:volumeNumber 12
114 rdf:type schema:PublicationVolume
115 Nf97f44ddf5354431b0f25d4ac79f2866 rdf:first sg:person.01004436276.09
116 rdf:rest Nb07232d5971740edadbb93c81ab14f18
117 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
118 schema:name Biological Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biochemistry and Cell Biology
122 rdf:type schema:DefinedTerm
123 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical and Health Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
127 schema:name Oncology and Carcinogenesis
128 rdf:type schema:DefinedTerm
129 sg:journal.1042272 schema:issn 1868-6958
130 1868-6966
131 schema:name Cancer Nanotechnology
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.01004436276.09 schema:affiliation grid-institutes:grid.411356.4
135 schema:familyName Cai
136 schema:givenName Tiange
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004436276.09
138 rdf:type schema:Person
139 sg:person.010347370011.43 schema:affiliation grid-institutes:grid.258164.c
140 schema:familyName Lan
141 schema:givenName Meng
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010347370011.43
143 rdf:type schema:Person
144 sg:person.010706222347.40 schema:affiliation grid-institutes:grid.258164.c
145 schema:familyName Liu
146 schema:givenName Fengjie
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010706222347.40
148 rdf:type schema:Person
149 sg:person.011742331011.40 schema:affiliation grid-institutes:grid.258164.c
150 schema:familyName Zou
151 schema:givenName Tengteng
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011742331011.40
153 rdf:type schema:Person
154 sg:person.01361036153.77 schema:affiliation grid-institutes:grid.258164.c
155 schema:familyName Cai
156 schema:givenName Yu
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361036153.77
158 rdf:type schema:Person
159 sg:person.015442170213.23 schema:affiliation grid-institutes:grid.490148.0
160 schema:familyName Tian
161 schema:givenName Huaqin
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442170213.23
163 rdf:type schema:Person
164 sg:person.016613713147.01 schema:affiliation grid-institutes:grid.258164.c
165 schema:familyName Li
166 schema:givenName Lihong
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016613713147.01
168 rdf:type schema:Person
169 sg:pub.10.1007/s10637-014-0192-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013660039
170 https://doi.org/10.1007/s10637-014-0192-4
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s11010-018-3346-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103227102
173 https://doi.org/10.1007/s11010-018-3346-4
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/cr.2009.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004224732
176 https://doi.org/10.1038/cr.2009.5
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/onc.2013.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040662982
179 https://doi.org/10.1038/onc.2013.57
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1479-5876-10-s1-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041097580
182 https://doi.org/10.1186/1479-5876-10-s1-s7
183 rdf:type schema:CreativeWork
184 grid-institutes:grid.258164.c schema:alternateName College of Pharmacy, Jinan University, 510632, Guangzhou, People’s Republic of China
185 Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, 510632, Guangzhou, People’s Republic of China
186 schema:name College of Pharmacy, Jinan University, 510632, Guangzhou, People’s Republic of China
187 Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, 510632, Guangzhou, People’s Republic of China
188 rdf:type schema:Organization
189 grid-institutes:grid.411356.4 schema:alternateName College of Life Sciences, Liaoning University, 110036, Shenyang, People’s Republic of China
190 schema:name College of Life Sciences, Liaoning University, 110036, Shenyang, People’s Republic of China
191 rdf:type schema:Organization
192 grid-institutes:grid.490148.0 schema:alternateName Foshan Hospital of Traditional Chinese Medicine, 528000, Foshan, People’s Republic of China
193 schema:name Foshan Hospital of Traditional Chinese Medicine, 528000, Foshan, People’s Republic of China
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...