Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-08

AUTHORS

A. Taherian, N. Esfandiari, S. Rouhani

ABSTRACT

BackgroundBreast cancer is one of the most challenging cancers among women which is considered one of the most lethal cancers to this date. From the time that cancer has been discovered, finding the best therapeutic method is still an ongoing process. As a novel therapeutic method, nanomedicine has brought a vast number of materials that could versatilely be used as a drug carrier. The purpose of this study is to develop a novel black pomegranate peel extract loaded with chitosan-coated magnetic nanoparticles to treat breast cancer cells.ResultsThe morphology and size distribution of the nanoparticles studied by dynamic light scattering, atomic force microscopy, scanning, and transitional electron microscopy showed the spherical shape of the nanoparticles and their promising size range. Studies by Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and zeta sizer confirmed the synthesis, substantial crystallinity, magnetic potential of the nanoparticles, and their satisfactory stability. The DPPH assay revealed that the obtained black pomegranate peel extract has 60% free radical scavenging activity. The cytotoxicity studies by MTT and LDH assay carried out on NIH/3T3, MBA-MB-231, and 4T1 cells confirmed that the magnetic nanoparticles had no significant cytotoxicity on the cells. However, the drug-loaded nanoparticles could significantly eradicate cancerous cells which had more efficiency comparing to free drug. Furthermore, free drug and drug-loaded nanoparticles had no toxic effect on normal cells.ConclusionOwing to the results achieved from this study, the novel drug-loaded nanoparticles are compatible to be used for breast cancer treatment and could potentially be used for further in vivo studies. More... »

PAGES

15

References to SciGraph publications

  • 2018-01-29. The study of toxicity and pathogenicity risk of Potato Virus X/Herceptin nanoparticles as agents for cancer therapy in CANCER NANOTECHNOLOGY
  • 2019-08-30. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles in SIGNAL TRANSDUCTION AND TARGETED THERAPY
  • 2017-05-09. Rethinking cancer nanotheranostics in NATURE REVIEWS MATERIALS
  • 2015-08-19. A new application of plant virus nanoparticles as drug delivery in breast cancer in TUMOR BIOLOGY
  • 2012-05-08. Chitosan-based nanocapsules: physical characterization, stability in biological media and capsaicin encapsulation in COLLOID AND POLYMER SCIENCE
  • 2020-10-14. Algae-meditated route to cuprous oxide (Cu2O) nanoparticle: differential expression profile of MALAT1 and GAS5 LncRNAs and cytotoxic effect in human breast cancer in CANCER NANOTECHNOLOGY
  • 2018-03-16. Controlled drug delivery vehicles for cancer treatment and their performance in SIGNAL TRANSDUCTION AND TARGETED THERAPY
  • 2018-11-03. Physicochemical and Phytochemical Characterization and Storage Stability of Freeze-dried Encapsulated Pomegranate Peel Anthocyanin and In Vitro Evaluation of Its Antioxidant Activity in FOOD AND BIOPROCESS TECHNOLOGY
  • 2010-05-05. A core-shell nanomaterial with endogenous therapeutic and diagnostic functions in CANCER NANOTECHNOLOGY
  • 2015-03-22. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal in APPLIED NANOSCIENCE
  • 2012-10-30. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract in BMC COMPLEMENTARY MEDICINE AND THERAPIES
  • 2018-04-02. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction in CANCER NANOTECHNOLOGY
  • 2018-05-10. Novel method for rapid toxicity screening of magnetic nanoparticles in SCIENTIFIC REPORTS
  • 2018-04-17. Techniques for extraction and isolation of natural products: a comprehensive review in CHINESE MEDICINE
  • 2014-05-01. An integrated approach for the in vitro dosimetry of engineered nanomaterials in PARTICLE AND FIBRE TOXICOLOGY
  • 2020-03-30. Preferential drug delivery to tumor cells than normal cells using a tunable niosome–chitosan double package nanodelivery system: a novel in vitro model in CANCER NANOTECHNOLOGY
  • 2019-01-03. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.) in BMC RESEARCH NOTES
  • 2016-11-11. Cancer nanomedicine: progress, challenges and opportunities in NATURE REVIEWS CANCER
  • 2016-06-14. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date in PHARMACEUTICAL RESEARCH
  • 2020-10. A New Anti-counterfeiting Feature Relying on Invisible Non-toxic Fluorescent Carbon Dots in JOURNAL OF ANALYSIS AND TESTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12645-021-00086-8

    DOI

    http://dx.doi.org/10.1186/s12645-021-00086-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139562517


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412502.0", 
              "name": [
                "Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taherian", 
            "givenName": "A.", 
            "id": "sg:person.013551223247.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551223247.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412502.0", 
              "name": [
                "Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Esfandiari", 
            "givenName": "N.", 
            "id": "sg:person.0677147325.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677147325.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.459642.8", 
              "name": [
                "Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rouhani", 
            "givenName": "S.", 
            "id": "sg:person.0726577717.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726577717.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrc.2016.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039839307", 
              "https://doi.org/10.1038/nrc.2016.108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12645-020-00059-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126015980", 
              "https://doi.org/10.1186/s12645-020-00059-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-015-0429-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017248702", 
              "https://doi.org/10.1007/s13204-015-0429-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00396-012-2669-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017206636", 
              "https://doi.org/10.1007/s00396-012-2669-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13277-015-3867-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041472420", 
              "https://doi.org/10.1007/s13277-015-3867-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12645-018-0037-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101712126", 
              "https://doi.org/10.1186/s12645-018-0037-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41392-019-0068-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120694830", 
              "https://doi.org/10.1038/s41392-019-0068-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41392-017-0004-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101544935", 
              "https://doi.org/10.1038/s41392-017-0004-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13104-018-3960-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111064118", 
              "https://doi.org/10.1186/s13104-018-3960-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12645-010-0002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036508836", 
              "https://doi.org/10.1007/s12645-010-0002-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41664-020-00149-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132319247", 
              "https://doi.org/10.1007/s41664-020-00149-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6882-12-200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012388788", 
              "https://doi.org/10.1186/1472-6882-12-200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13020-018-0177-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103408200", 
              "https://doi.org/10.1186/s13020-018-0177-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12645-018-0036-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100690141", 
              "https://doi.org/10.1186/s12645-018-0036-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11095-016-1958-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021785826", 
              "https://doi.org/10.1007/s11095-016-1958-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12645-020-00066-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131755085", 
              "https://doi.org/10.1186/s12645-020-00066-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11947-018-2195-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108010620", 
              "https://doi.org/10.1007/s11947-018-2195-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-25852-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103817493", 
              "https://doi.org/10.1038/s41598-018-25852-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2017.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085219934", 
              "https://doi.org/10.1038/natrevmats.2017.24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1743-8977-11-20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007642560", 
              "https://doi.org/10.1186/1743-8977-11-20"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-07-08", 
        "datePublishedReg": "2021-07-08", 
        "description": "BackgroundBreast cancer is one of the most challenging cancers among women which is considered one of the most lethal cancers to this date. From the time that cancer has been discovered, finding the best therapeutic method is still an ongoing process. As a novel therapeutic method, nanomedicine has brought a vast number of materials that could versatilely be used as a drug carrier. The purpose of this study is to develop a novel black pomegranate peel extract loaded with chitosan-coated magnetic nanoparticles to treat breast cancer cells.ResultsThe morphology and size distribution of the nanoparticles studied by dynamic light scattering, atomic force microscopy, scanning, and transitional electron microscopy showed the spherical shape of the nanoparticles and their promising size range. Studies by Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and zeta sizer confirmed the synthesis, substantial crystallinity, magnetic potential of the nanoparticles, and their satisfactory stability. The DPPH assay revealed that the obtained black pomegranate peel extract has 60% free radical scavenging activity. The cytotoxicity studies by MTT and LDH assay carried out on NIH/3T3, MBA-MB-231, and 4T1 cells confirmed that the magnetic nanoparticles had no significant cytotoxicity on the cells. However, the drug-loaded nanoparticles could significantly eradicate cancerous cells which had more efficiency comparing to free drug. Furthermore, free drug and drug-loaded nanoparticles had no toxic effect on normal cells.ConclusionOwing to the results achieved from this study, the novel drug-loaded nanoparticles are compatible to be used for breast cancer treatment and could potentially be used for further in vivo studies.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12645-021-00086-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1042272", 
            "issn": [
              "1868-6958", 
              "1868-6966"
            ], 
            "name": "Cancer Nanotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "drug-loaded nanoparticles", 
          "magnetic nanoparticles", 
          "chitosan-coated magnetic nanoparticles", 
          "transitional electron microscopy", 
          "chitosan-coated magnetic nanoparticles", 
          "cancer drug delivery", 
          "atomic force microscopy", 
          "free drug", 
          "dynamic light scattering", 
          "pomegranate peel extract", 
          "breast cancer drug delivery", 
          "X-ray diffraction", 
          "zeta sizer", 
          "sample magnetometer", 
          "peel extract", 
          "nanoparticles", 
          "force microscopy", 
          "drug carriers", 
          "drug delivery", 
          "MBA-MB-231", 
          "substantial crystallinity", 
          "spherical shape", 
          "electron microscopy", 
          "Fourier transform", 
          "cytotoxicity studies", 
          "light scattering", 
          "free radical scavenging activity", 
          "satisfactory stability", 
          "radical scavenging activity", 
          "size distribution", 
          "size range", 
          "microscopy", 
          "significant cytotoxicity", 
          "cancerous cells", 
          "scavenging activity", 
          "nanomedicine", 
          "novel therapeutic method", 
          "more efficiency", 
          "magnetometer", 
          "spectroscopy", 
          "cancer treatment", 
          "diffraction", 
          "synthesis", 
          "crystallinity", 
          "transform", 
          "breast cancer cells", 
          "carriers", 
          "morphology", 
          "therapeutic methods", 
          "vivo studies", 
          "LDH", 
          "challenging cancers", 
          "vast number", 
          "stability", 
          "sizer", 
          "delivery", 
          "extract", 
          "cancer cells", 
          "efficiency", 
          "normal cells", 
          "toxic effects", 
          "materials", 
          "cytotoxicity", 
          "drugs", 
          "cells", 
          "scattering", 
          "MTT", 
          "method", 
          "scanning", 
          "NIH/3T3", 
          "range", 
          "breast cancer treatment", 
          "potential", 
          "shape", 
          "activity", 
          "process", 
          "study", 
          "best therapeutic method", 
          "time", 
          "effect", 
          "results", 
          "distribution", 
          "BackgroundBreast cancer", 
          "number", 
          "treatment", 
          "date", 
          "cancer", 
          "purpose", 
          "lethal cancers", 
          "magnetic potential", 
          "ongoing process", 
          "women"
        ], 
        "name": "Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles", 
        "pagination": "15", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139562517"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12645-021-00086-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12645-021-00086-8", 
          "https://app.dimensions.ai/details/publication/pub.1139562517"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_920.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12645-021-00086-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00086-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00086-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00086-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12645-021-00086-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    258 TRIPLES      22 PREDICATES      139 URIs      108 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12645-021-00086-8 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 anzsrc-for:0306
    4 anzsrc-for:10
    5 anzsrc-for:1007
    6 schema:author N13aa7331284245eb9b8de04e27b2953f
    7 schema:citation sg:pub.10.1007/s00396-012-2669-z
    8 sg:pub.10.1007/s11095-016-1958-5
    9 sg:pub.10.1007/s11947-018-2195-1
    10 sg:pub.10.1007/s12645-010-0002-4
    11 sg:pub.10.1007/s13204-015-0429-3
    12 sg:pub.10.1007/s13277-015-3867-3
    13 sg:pub.10.1007/s41664-020-00149-6
    14 sg:pub.10.1038/natrevmats.2017.24
    15 sg:pub.10.1038/nrc.2016.108
    16 sg:pub.10.1038/s41392-017-0004-3
    17 sg:pub.10.1038/s41392-019-0068-3
    18 sg:pub.10.1038/s41598-018-25852-4
    19 sg:pub.10.1186/1472-6882-12-200
    20 sg:pub.10.1186/1743-8977-11-20
    21 sg:pub.10.1186/s12645-018-0036-6
    22 sg:pub.10.1186/s12645-018-0037-5
    23 sg:pub.10.1186/s12645-020-00059-3
    24 sg:pub.10.1186/s12645-020-00066-4
    25 sg:pub.10.1186/s13020-018-0177-x
    26 sg:pub.10.1186/s13104-018-3960-y
    27 schema:datePublished 2021-07-08
    28 schema:datePublishedReg 2021-07-08
    29 schema:description BackgroundBreast cancer is one of the most challenging cancers among women which is considered one of the most lethal cancers to this date. From the time that cancer has been discovered, finding the best therapeutic method is still an ongoing process. As a novel therapeutic method, nanomedicine has brought a vast number of materials that could versatilely be used as a drug carrier. The purpose of this study is to develop a novel black pomegranate peel extract loaded with chitosan-coated magnetic nanoparticles to treat breast cancer cells.ResultsThe morphology and size distribution of the nanoparticles studied by dynamic light scattering, atomic force microscopy, scanning, and transitional electron microscopy showed the spherical shape of the nanoparticles and their promising size range. Studies by Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and zeta sizer confirmed the synthesis, substantial crystallinity, magnetic potential of the nanoparticles, and their satisfactory stability. The DPPH assay revealed that the obtained black pomegranate peel extract has 60% free radical scavenging activity. The cytotoxicity studies by MTT and LDH assay carried out on NIH/3T3, MBA-MB-231, and 4T1 cells confirmed that the magnetic nanoparticles had no significant cytotoxicity on the cells. However, the drug-loaded nanoparticles could significantly eradicate cancerous cells which had more efficiency comparing to free drug. Furthermore, free drug and drug-loaded nanoparticles had no toxic effect on normal cells.ConclusionOwing to the results achieved from this study, the novel drug-loaded nanoparticles are compatible to be used for breast cancer treatment and could potentially be used for further in vivo studies.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N243d477c49904c3a8828194f93414f90
    34 Nfa232ad3846241e4b9924d3a226d4ba4
    35 sg:journal.1042272
    36 schema:keywords BackgroundBreast cancer
    37 Fourier transform
    38 LDH
    39 MBA-MB-231
    40 MTT
    41 NIH/3T3
    42 X-ray diffraction
    43 activity
    44 atomic force microscopy
    45 best therapeutic method
    46 breast cancer cells
    47 breast cancer drug delivery
    48 breast cancer treatment
    49 cancer
    50 cancer cells
    51 cancer drug delivery
    52 cancer treatment
    53 cancerous cells
    54 carriers
    55 cells
    56 challenging cancers
    57 chitosan-coated magnetic nanoparticles
    58 crystallinity
    59 cytotoxicity
    60 cytotoxicity studies
    61 date
    62 delivery
    63 diffraction
    64 distribution
    65 drug carriers
    66 drug delivery
    67 drug-loaded nanoparticles
    68 drugs
    69 dynamic light scattering
    70 effect
    71 efficiency
    72 electron microscopy
    73 extract
    74 force microscopy
    75 free drug
    76 free radical scavenging activity
    77 lethal cancers
    78 light scattering
    79 magnetic nanoparticles
    80 magnetic potential
    81 magnetometer
    82 materials
    83 method
    84 microscopy
    85 more efficiency
    86 morphology
    87 nanomedicine
    88 nanoparticles
    89 normal cells
    90 novel therapeutic method
    91 number
    92 ongoing process
    93 peel extract
    94 pomegranate peel extract
    95 potential
    96 process
    97 purpose
    98 radical scavenging activity
    99 range
    100 results
    101 sample magnetometer
    102 satisfactory stability
    103 scanning
    104 scattering
    105 scavenging activity
    106 shape
    107 significant cytotoxicity
    108 size distribution
    109 size range
    110 sizer
    111 spectroscopy
    112 spherical shape
    113 stability
    114 study
    115 substantial crystallinity
    116 synthesis
    117 therapeutic methods
    118 time
    119 toxic effects
    120 transform
    121 transitional electron microscopy
    122 treatment
    123 vast number
    124 vivo studies
    125 women
    126 zeta sizer
    127 schema:name Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles
    128 schema:pagination 15
    129 schema:productId N5254105973f348f881481d69e262226a
    130 Nb01a630abde94308b03326480405087c
    131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139562517
    132 https://doi.org/10.1186/s12645-021-00086-8
    133 schema:sdDatePublished 2022-05-10T10:29
    134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    135 schema:sdPublisher Nd1ad453e241b4e54ab76e5475cf14c8d
    136 schema:url https://doi.org/10.1186/s12645-021-00086-8
    137 sgo:license sg:explorer/license/
    138 sgo:sdDataset articles
    139 rdf:type schema:ScholarlyArticle
    140 N13aa7331284245eb9b8de04e27b2953f rdf:first sg:person.013551223247.42
    141 rdf:rest N269e50f36f84494cb96ba57aa318d20e
    142 N243d477c49904c3a8828194f93414f90 schema:volumeNumber 12
    143 rdf:type schema:PublicationVolume
    144 N269e50f36f84494cb96ba57aa318d20e rdf:first sg:person.0677147325.20
    145 rdf:rest N69f5ec16a230426f8f97354139f19905
    146 N5254105973f348f881481d69e262226a schema:name doi
    147 schema:value 10.1186/s12645-021-00086-8
    148 rdf:type schema:PropertyValue
    149 N69f5ec16a230426f8f97354139f19905 rdf:first sg:person.0726577717.48
    150 rdf:rest rdf:nil
    151 Nb01a630abde94308b03326480405087c schema:name dimensions_id
    152 schema:value pub.1139562517
    153 rdf:type schema:PropertyValue
    154 Nd1ad453e241b4e54ab76e5475cf14c8d schema:name Springer Nature - SN SciGraph project
    155 rdf:type schema:Organization
    156 Nfa232ad3846241e4b9924d3a226d4ba4 schema:issueNumber 1
    157 rdf:type schema:PublicationIssue
    158 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Chemical Sciences
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Macromolecular and Materials Chemistry
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Physical Chemistry (incl. Structural)
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Technology
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Nanotechnology
    172 rdf:type schema:DefinedTerm
    173 sg:journal.1042272 schema:issn 1868-6958
    174 1868-6966
    175 schema:name Cancer Nanotechnology
    176 schema:publisher Springer Nature
    177 rdf:type schema:Periodical
    178 sg:person.013551223247.42 schema:affiliation grid-institutes:grid.412502.0
    179 schema:familyName Taherian
    180 schema:givenName A.
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551223247.42
    182 rdf:type schema:Person
    183 sg:person.0677147325.20 schema:affiliation grid-institutes:grid.412502.0
    184 schema:familyName Esfandiari
    185 schema:givenName N.
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677147325.20
    187 rdf:type schema:Person
    188 sg:person.0726577717.48 schema:affiliation grid-institutes:grid.459642.8
    189 schema:familyName Rouhani
    190 schema:givenName S.
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726577717.48
    192 rdf:type schema:Person
    193 sg:pub.10.1007/s00396-012-2669-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017206636
    194 https://doi.org/10.1007/s00396-012-2669-z
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s11095-016-1958-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021785826
    197 https://doi.org/10.1007/s11095-016-1958-5
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s11947-018-2195-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108010620
    200 https://doi.org/10.1007/s11947-018-2195-1
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s12645-010-0002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036508836
    203 https://doi.org/10.1007/s12645-010-0002-4
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s13204-015-0429-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017248702
    206 https://doi.org/10.1007/s13204-015-0429-3
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s13277-015-3867-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041472420
    209 https://doi.org/10.1007/s13277-015-3867-3
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s41664-020-00149-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132319247
    212 https://doi.org/10.1007/s41664-020-00149-6
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/natrevmats.2017.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085219934
    215 https://doi.org/10.1038/natrevmats.2017.24
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nrc.2016.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039839307
    218 https://doi.org/10.1038/nrc.2016.108
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/s41392-017-0004-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101544935
    221 https://doi.org/10.1038/s41392-017-0004-3
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/s41392-019-0068-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120694830
    224 https://doi.org/10.1038/s41392-019-0068-3
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/s41598-018-25852-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103817493
    227 https://doi.org/10.1038/s41598-018-25852-4
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/1472-6882-12-200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012388788
    230 https://doi.org/10.1186/1472-6882-12-200
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/1743-8977-11-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007642560
    233 https://doi.org/10.1186/1743-8977-11-20
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1186/s12645-018-0036-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100690141
    236 https://doi.org/10.1186/s12645-018-0036-6
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1186/s12645-018-0037-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101712126
    239 https://doi.org/10.1186/s12645-018-0037-5
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1186/s12645-020-00059-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126015980
    242 https://doi.org/10.1186/s12645-020-00059-3
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1186/s12645-020-00066-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131755085
    245 https://doi.org/10.1186/s12645-020-00066-4
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/s13020-018-0177-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103408200
    248 https://doi.org/10.1186/s13020-018-0177-x
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/s13104-018-3960-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1111064118
    251 https://doi.org/10.1186/s13104-018-3960-y
    252 rdf:type schema:CreativeWork
    253 grid-institutes:grid.412502.0 schema:alternateName Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
    254 schema:name Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
    255 rdf:type schema:Organization
    256 grid-institutes:grid.459642.8 schema:alternateName Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran
    257 schema:name Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran
    258 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...