Important parameters for optimized metal nanoparticles-aided electromagnetic field (EMF) effect on cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Lawrence Ochoo, Charles Migwi, John Okumu

ABSTRACT

Background: A number of experimental research findings for the metal nanoparticles (NPs)-mediated EMF photothermal therapy of cancer cells show an intriguing trend of the NPs' size-dependent efficacy. This is a phenomenon we find to trend with the light absorption bandwidth behavior (full width at half maximum) of the NPs and the accompanying electric field enhancement. We find that the nanoparticle sizes that have been reported to produce the optimized effect on cancer cells are of minimum absorption bandwidth and optimized electric field magnitude. While the death of cancer cells under the NPs-aided EMF effect has in the past attracted varied interpretations, either as a thermal or non-thermal effect, photothermal effect has gained a wide acceptance due to the exhibited hyperthermia. However, the exhibited trend of the NPs' size-dependent efficacy is beginning to feature as a possible manifestation of other overlooked underlying or synergistic phenomenal conditions. Method: We present a theoretical model and analysis which reveal that the contribution and efficacy of the metal NPs in the destruction of cancer depend partly but significantly on the accompanying electric field intensity enhancement factor and partly on their absorption cross-section. Results: This paper finds that, other than the expected hyperthermia, the metal NPs' sizes for the optimized therapy on cancer cells seem to fulfill other synergistic conditions which need to come to the fore. We find interplay between electric field and thermal effects as independent energy channels where balancing may be important for the optimized EMF effect, in the ratio of about 5:1. The required balancing depends on the absorption bandwidth and absorption cross-section of the NPs, the frequency of EMF used and the relative permittivity of the cancer cells. The NPs' size-dependent efficacy decreases away from the NPs' size of minimum absorption bandwidth, which is around 20 nm for Au NPs or other shapes of equivalent surface area-volume ratio. While the absorption wavelength peak for metal NPs would change with the change of shape, the responsible condition(s) for optimizing the efficacy remains relatively invariable. Conclusion: From the modeling and the analysis of the NPs' size for optimizing the EMF therapy on cancer cells, the ratio of electric field enhancement by metal NPs to the associated thermal effect is a very important factor for efficacy. More... »

PAGES

2

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12645-018-0038-4

DOI

http://dx.doi.org/10.1186/s12645-018-0038-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101537745

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29576808


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kenyatta University", 
          "id": "https://www.grid.ac/institutes/grid.9762.a", 
          "name": [
            "Physics Department, Kenyatta University, Box 43844, 00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ochoo", 
        "givenName": "Lawrence", 
        "id": "sg:person.014664506562.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664506562.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kenyatta University", 
          "id": "https://www.grid.ac/institutes/grid.9762.a", 
          "name": [
            "Physics Department, Kenyatta University, Box 43844, 00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Migwi", 
        "givenName": "Charles", 
        "id": "sg:person.015471471035.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471471035.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kenyatta University", 
          "id": "https://www.grid.ac/institutes/grid.9762.a", 
          "name": [
            "Physics Department, Kenyatta University, Box 43844, 00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okumu", 
        "givenName": "John", 
        "id": "sg:person.016413607237.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016413607237.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/jp9917648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9917648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physrev.00018.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005339377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/38/15/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005599918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/38/15/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005599918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/thno.8575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007265909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.21896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012155812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.21896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012155812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotobiol.2005.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012601447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotobiol.2005.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012601447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jcmm.12088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013663285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/5497136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015153696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/450670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015240018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12645-016-0024-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016272753", 
          "https://doi.org/10.1186/s12645-016-0024-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12645-016-0024-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016272753", 
          "https://doi.org/10.1186/s12645-016-0024-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201400279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018882262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp984796o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019252808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp984796o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019252808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2009.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022210751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ejic.201100536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022515063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jctn.2008.1103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023144232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2004.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025691876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jare.2010.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026325712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01442350050034180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026640278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b604038c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028275861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(85)90239-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030164136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(85)90239-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030164136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2015.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030223111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b01070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030759844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0103-50532010000700003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032479726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/nano3010086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033002598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/9/6/065002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036865814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/37/22/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041165898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addr.2009.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042490170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19083300302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045719821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp409298f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046843000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.canlet.2005.07.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049198248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-012-1261-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050386725", 
          "https://doi.org/10.1007/s11051-012-1261-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b02453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055120869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja5042989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055856498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1632546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057728034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3116645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057913032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2009.2030340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061335949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3156800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062104339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3156800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062104339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.21.1765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063095565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18052/www.scipress.com/ilcpa.36.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068563662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/187152011797927599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069218472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5897/ijps11.893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073486853"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: A number of experimental research findings for the metal nanoparticles (NPs)-mediated EMF photothermal therapy of cancer cells show an intriguing trend of the NPs' size-dependent efficacy. This is a phenomenon we find to trend with the light absorption bandwidth behavior (full width at half maximum) of the NPs and the accompanying electric field enhancement. We find that the nanoparticle sizes that have been reported to produce the optimized effect on cancer cells are of minimum absorption bandwidth and optimized electric field magnitude. While the death of cancer cells under the NPs-aided EMF effect has in the past attracted varied interpretations, either as a thermal or non-thermal effect, photothermal effect has gained a wide acceptance due to the exhibited hyperthermia. However, the exhibited trend of the NPs' size-dependent efficacy is beginning to feature as a possible manifestation of other overlooked underlying or synergistic phenomenal conditions.\nMethod: We present a theoretical model and analysis which reveal that the contribution and efficacy of the metal NPs in the destruction of cancer depend partly but significantly on the accompanying electric field intensity enhancement factor and partly on their absorption cross-section.\nResults: This paper finds that, other than the expected hyperthermia, the metal NPs' sizes for the optimized therapy on cancer cells seem to fulfill other synergistic conditions which need to come to the fore. We find interplay between electric field and thermal effects as independent energy channels where balancing may be important for the optimized EMF effect, in the ratio of about 5:1. The required balancing depends on the absorption bandwidth and absorption cross-section of the NPs, the frequency of EMF used and the relative permittivity of the cancer cells. The NPs' size-dependent efficacy decreases away from the NPs' size of minimum absorption bandwidth, which is around 20\u00a0nm for Au NPs or other shapes of equivalent surface area-volume ratio. While the absorption wavelength peak for metal NPs would change with the change of shape, the responsible condition(s) for optimizing the efficacy remains relatively invariable.\nConclusion: From the modeling and the analysis of the NPs' size for optimizing the EMF therapy on cancer cells, the ratio of electric field enhancement by metal NPs to the associated thermal effect is a very important factor for efficacy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12645-018-0038-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042272", 
        "issn": [
          "1868-6958", 
          "1868-6966"
        ], 
        "name": "Cancer Nanotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Important parameters for optimized metal nanoparticles-aided electromagnetic field (EMF) effect on cancer", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "166d3da582db89f279ddef121c00d94e3fca4f1e8f81df7c6c2922a9813e65c2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29576808"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101516978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12645-018-0038-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101537745"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12645-018-0038-4", 
      "https://app.dimensions.ai/details/publication/pub.1101537745"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12645-018-0038-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12645-018-0038-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12645-018-0038-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12645-018-0038-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12645-018-0038-4'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12645-018-0038-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7005417613a44d27a527afe0786950f8
4 schema:citation sg:pub.10.1007/s11051-012-1261-2
5 sg:pub.10.1186/s12645-016-0024-7
6 https://doi.org/10.1002/adfm.201400279
7 https://doi.org/10.1002/andp.19083300302
8 https://doi.org/10.1002/ejic.201100536
9 https://doi.org/10.1002/ijc.21896
10 https://doi.org/10.1016/0039-6028(85)90239-0
11 https://doi.org/10.1016/j.addr.2009.11.006
12 https://doi.org/10.1016/j.biomaterials.2015.09.018
13 https://doi.org/10.1016/j.canlet.2005.07.035
14 https://doi.org/10.1016/j.jare.2010.02.002
15 https://doi.org/10.1016/j.jmps.2009.12.001
16 https://doi.org/10.1016/j.jphotobiol.2005.10.001
17 https://doi.org/10.1016/j.physe.2004.07.010
18 https://doi.org/10.1021/acs.nanolett.5b01070
19 https://doi.org/10.1021/acs.nanolett.5b02453
20 https://doi.org/10.1021/ja5042989
21 https://doi.org/10.1021/jp409298f
22 https://doi.org/10.1021/jp984796o
23 https://doi.org/10.1021/jp9917648
24 https://doi.org/10.1039/b604038c
25 https://doi.org/10.1063/1.1632546
26 https://doi.org/10.1063/1.3116645
27 https://doi.org/10.1080/01442350050034180
28 https://doi.org/10.1088/0022-3727/37/22/012
29 https://doi.org/10.1088/0022-3727/38/15/007
30 https://doi.org/10.1088/1478-3975/9/6/065002
31 https://doi.org/10.1103/physrevb.6.4370
32 https://doi.org/10.1109/jstqe.2009.2030340
33 https://doi.org/10.1111/jcmm.12088
34 https://doi.org/10.1115/1.3156800
35 https://doi.org/10.1143/jpsj.21.1765
36 https://doi.org/10.1152/physrev.00018.2011
37 https://doi.org/10.1155/2014/450670
38 https://doi.org/10.1155/2016/5497136
39 https://doi.org/10.1166/jctn.2008.1103
40 https://doi.org/10.1590/s0103-50532010000700003
41 https://doi.org/10.18052/www.scipress.com/ilcpa.36.67
42 https://doi.org/10.2174/187152011797927599
43 https://doi.org/10.3390/nano3010086
44 https://doi.org/10.5897/ijps11.893
45 https://doi.org/10.7150/thno.8575
46 schema:datePublished 2018-12
47 schema:datePublishedReg 2018-12-01
48 schema:description Background: A number of experimental research findings for the metal nanoparticles (NPs)-mediated EMF photothermal therapy of cancer cells show an intriguing trend of the NPs' size-dependent efficacy. This is a phenomenon we find to trend with the light absorption bandwidth behavior (full width at half maximum) of the NPs and the accompanying electric field enhancement. We find that the nanoparticle sizes that have been reported to produce the optimized effect on cancer cells are of minimum absorption bandwidth and optimized electric field magnitude. While the death of cancer cells under the NPs-aided EMF effect has in the past attracted varied interpretations, either as a thermal or non-thermal effect, photothermal effect has gained a wide acceptance due to the exhibited hyperthermia. However, the exhibited trend of the NPs' size-dependent efficacy is beginning to feature as a possible manifestation of other overlooked underlying or synergistic phenomenal conditions. Method: We present a theoretical model and analysis which reveal that the contribution and efficacy of the metal NPs in the destruction of cancer depend partly but significantly on the accompanying electric field intensity enhancement factor and partly on their absorption cross-section. Results: This paper finds that, other than the expected hyperthermia, the metal NPs' sizes for the optimized therapy on cancer cells seem to fulfill other synergistic conditions which need to come to the fore. We find interplay between electric field and thermal effects as independent energy channels where balancing may be important for the optimized EMF effect, in the ratio of about 5:1. The required balancing depends on the absorption bandwidth and absorption cross-section of the NPs, the frequency of EMF used and the relative permittivity of the cancer cells. The NPs' size-dependent efficacy decreases away from the NPs' size of minimum absorption bandwidth, which is around 20 nm for Au NPs or other shapes of equivalent surface area-volume ratio. While the absorption wavelength peak for metal NPs would change with the change of shape, the responsible condition(s) for optimizing the efficacy remains relatively invariable. Conclusion: From the modeling and the analysis of the NPs' size for optimizing the EMF therapy on cancer cells, the ratio of electric field enhancement by metal NPs to the associated thermal effect is a very important factor for efficacy.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N82e915dc672b4b86891fb3f0faa64d13
53 Nbe186c9e03cf4e198e407cba9ad304a8
54 sg:journal.1042272
55 schema:name Important parameters for optimized metal nanoparticles-aided electromagnetic field (EMF) effect on cancer
56 schema:pagination 2
57 schema:productId N5ce57ad86c4b4b5f98207cc6cfed55c0
58 N93fdf7e5a523455c86c5f5fac9a318d9
59 Nb90652ce4fa2457cac98a82a58e13aae
60 Ned9afe5438e84d1d8c0bcd273de164f6
61 Nefd8ecfd1f6d44ce9b61f30efcb1b626
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101537745
63 https://doi.org/10.1186/s12645-018-0038-4
64 schema:sdDatePublished 2019-04-11T11:53
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N45833f277a904ef1957063f3ffb5971b
67 schema:url https://link.springer.com/10.1186%2Fs12645-018-0038-4
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N45833f277a904ef1957063f3ffb5971b schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N5ce57ad86c4b4b5f98207cc6cfed55c0 schema:name readcube_id
74 schema:value 166d3da582db89f279ddef121c00d94e3fca4f1e8f81df7c6c2922a9813e65c2
75 rdf:type schema:PropertyValue
76 N7005417613a44d27a527afe0786950f8 rdf:first sg:person.014664506562.66
77 rdf:rest Nb922504906f64c829d2c1de84c8ae08a
78 N72199c11daf44ec88be5debf2badb902 rdf:first sg:person.016413607237.54
79 rdf:rest rdf:nil
80 N82e915dc672b4b86891fb3f0faa64d13 schema:volumeNumber 9
81 rdf:type schema:PublicationVolume
82 N93fdf7e5a523455c86c5f5fac9a318d9 schema:name pubmed_id
83 schema:value 29576808
84 rdf:type schema:PropertyValue
85 Nb90652ce4fa2457cac98a82a58e13aae schema:name nlm_unique_id
86 schema:value 101516978
87 rdf:type schema:PropertyValue
88 Nb922504906f64c829d2c1de84c8ae08a rdf:first sg:person.015471471035.18
89 rdf:rest N72199c11daf44ec88be5debf2badb902
90 Nbe186c9e03cf4e198e407cba9ad304a8 schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 Ned9afe5438e84d1d8c0bcd273de164f6 schema:name dimensions_id
93 schema:value pub.1101537745
94 rdf:type schema:PropertyValue
95 Nefd8ecfd1f6d44ce9b61f30efcb1b626 schema:name doi
96 schema:value 10.1186/s12645-018-0038-4
97 rdf:type schema:PropertyValue
98 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
99 schema:name Chemical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Chemistry (incl. Structural)
103 rdf:type schema:DefinedTerm
104 sg:journal.1042272 schema:issn 1868-6958
105 1868-6966
106 schema:name Cancer Nanotechnology
107 rdf:type schema:Periodical
108 sg:person.014664506562.66 schema:affiliation https://www.grid.ac/institutes/grid.9762.a
109 schema:familyName Ochoo
110 schema:givenName Lawrence
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664506562.66
112 rdf:type schema:Person
113 sg:person.015471471035.18 schema:affiliation https://www.grid.ac/institutes/grid.9762.a
114 schema:familyName Migwi
115 schema:givenName Charles
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471471035.18
117 rdf:type schema:Person
118 sg:person.016413607237.54 schema:affiliation https://www.grid.ac/institutes/grid.9762.a
119 schema:familyName Okumu
120 schema:givenName John
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016413607237.54
122 rdf:type schema:Person
123 sg:pub.10.1007/s11051-012-1261-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050386725
124 https://doi.org/10.1007/s11051-012-1261-2
125 rdf:type schema:CreativeWork
126 sg:pub.10.1186/s12645-016-0024-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016272753
127 https://doi.org/10.1186/s12645-016-0024-7
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/adfm.201400279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018882262
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/andp.19083300302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045719821
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/ejic.201100536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022515063
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/ijc.21896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012155812
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0039-6028(85)90239-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030164136
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.addr.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042490170
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.biomaterials.2015.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030223111
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.canlet.2005.07.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049198248
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jare.2010.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026325712
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jmps.2009.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022210751
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jphotobiol.2005.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012601447
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.physe.2004.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025691876
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/acs.nanolett.5b01070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030759844
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/acs.nanolett.5b02453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055120869
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ja5042989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055856498
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/jp409298f schema:sameAs https://app.dimensions.ai/details/publication/pub.1046843000
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/jp984796o schema:sameAs https://app.dimensions.ai/details/publication/pub.1019252808
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/jp9917648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953584
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1039/b604038c schema:sameAs https://app.dimensions.ai/details/publication/pub.1028275861
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1063/1.1632546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057728034
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1063/1.3116645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057913032
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1080/01442350050034180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026640278
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1088/0022-3727/37/22/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041165898
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1088/0022-3727/38/15/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005599918
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1088/1478-3975/9/6/065002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036865814
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.6.4370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592879
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/jstqe.2009.2030340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061335949
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/jcmm.12088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013663285
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1115/1.3156800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062104339
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1143/jpsj.21.1765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063095565
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1152/physrev.00018.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005339377
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1155/2014/450670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015240018
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1155/2016/5497136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015153696
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1166/jctn.2008.1103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023144232
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1590/s0103-50532010000700003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032479726
198 rdf:type schema:CreativeWork
199 https://doi.org/10.18052/www.scipress.com/ilcpa.36.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068563662
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2174/187152011797927599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069218472
202 rdf:type schema:CreativeWork
203 https://doi.org/10.3390/nano3010086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033002598
204 rdf:type schema:CreativeWork
205 https://doi.org/10.5897/ijps11.893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073486853
206 rdf:type schema:CreativeWork
207 https://doi.org/10.7150/thno.8575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007265909
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.9762.a schema:alternateName Kenyatta University
210 schema:name Physics Department, Kenyatta University, Box 43844, 00100, Nairobi, Kenya
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...