Modified SureSelectQXT Target Enrichment Protocol for Illumina Multiplexed Sequencing of FFPE Samples View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

J. M. Rosa-Rosa, T Caniego-Casas, S Leskela, G Muñoz, F del Castillo, P Garrido, J Palacios

ABSTRACT

Background: Personalised medicine is nowadays a major objective in oncology. Molecular characterization of tumours through NGS offers the possibility to find possible therapeutic targets in a time- and cost-effective way. However, the low quality and complexity of FFPE DNA samples bring a series of disadvantages for massive parallel sequencing techniques compared to high-quality DNA samples (from blood cells, cell cultures, etc.). Results: We performed several experiments to understand the behaviour of FFPE DNA samples during the construction of SureSelectQXT libraries. First, we designed a quality checkpoint for FFPE DNA samples based on the quantification of their amplification capability (qcPCR). We observed that FFPE DNA samples can be classified according to DIN value and qcPCR concentration into unusable, or low-quality (LQ) and good-quality (GQ) DNA. For GQ samples, we increased the amount of input DNA to 150 ng and the digestion time to 30 min, whereas for LQ samples, we used 50 ng of DNA as input but we decreased the digestion time to 1 min. In all cases, we increased the cycles of the pre-hyb PCR to 10 but decreased the cycles of the post-hyb PCR to 8. In addition, we confirmed that using half of the volume of reagents can be beneficial. Finally, in order to obtain better results, we designed a decision flow-chart to achieve a seeding concentration of 12-14 pM for MiSeq Reagent Kit v2. Conclusions: Our experiments allowed us to unveil the behaviour of low-quality FFPE DNA samples during the construction of SureSelectQXT libraries. Sequencing results showed that, using our modified SureSelectQXT protocol, the final percentage of usable reads for low-quality samples was increased more than three times allowing to reach median depth/million reads values of 76.35. This value is equivalent to ~ 0.9 and ~ 0.7 of the values obtained for good-quality FFPE and high-quality DNA respectively. More... »

PAGES

19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12575-018-0084-7

DOI

http://dx.doi.org/10.1186/s12575-018-0084-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107577450

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30337841


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "CIBER-ONC, Instituto de Salud Carlos III, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosa-Rosa", 
        "givenName": "J. M.", 
        "id": "sg:person.01307354274.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307354274.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Ram\u00f3n y Cajal de Investigaci\u00f3n Sanitaria", 
          "id": "https://www.grid.ac/institutes/grid.420232.5", 
          "name": [
            "Instituto Ram\u00f3n y Cajal de Investigaci\u00f3n Sanitaria, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caniego-Casas", 
        "givenName": "T", 
        "id": "sg:person.013302474400.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013302474400.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Ram\u00f3n y Cajal de Investigaci\u00f3n Sanitaria", 
          "id": "https://www.grid.ac/institutes/grid.420232.5", 
          "name": [
            "CIBER-ONC, Instituto de Salud Carlos III, Madrid, Spain", 
            "Instituto Ram\u00f3n y Cajal de Investigaci\u00f3n Sanitaria, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leskela", 
        "givenName": "S", 
        "id": "sg:person.01170546334.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170546334.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Ram\u00f3n y Cajal de Investigaci\u00f3n Sanitaria", 
          "id": "https://www.grid.ac/institutes/grid.420232.5", 
          "name": [
            "Instituto Ram\u00f3n y Cajal de Investigaci\u00f3n Sanitaria, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mu\u00f1oz", 
        "givenName": "G", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Instituto Ram\u00f3n y Cajal de Investigaci\u00f3n Sanitaria, Madrid, Spain", 
            "Servicio de Gen\u00e9tica, Hospital Universitario Ram\u00f3n y Cajal, Madrid, Spain", 
            "CIBER-ER, Instituto de Salud Carlos III, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "del Castillo", 
        "givenName": "F", 
        "id": "sg:person.0665412471.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665412471.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alcal\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.7159.a", 
          "name": [
            "Instituto Ram\u00f3n y Cajal de Investigaci\u00f3n Sanitaria, Madrid, Spain", 
            "Medical Oncology Department, Hospital Universitario Ram\u00f3n y Cajal, Madrid, Spain", 
            "Facultad de Medicina, Universidad de Alcal\u00e1 de Henares, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garrido", 
        "givenName": "P", 
        "id": "sg:person.01315276733.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315276733.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Universitario Ram\u00f3n y Cajal", 
          "id": "https://www.grid.ac/institutes/grid.411347.4", 
          "name": [
            "CIBER-ONC, Instituto de Salud Carlos III, Madrid, Spain", 
            "Instituto Ram\u00f3n y Cajal de Investigaci\u00f3n Sanitaria, Madrid, Spain", 
            "Facultad de Medicina, Universidad de Alcal\u00e1 de Henares, Madrid, Spain", 
            "Servicio de Anatom\u00eda Patol\u00f3gica, Hospital Ram\u00f3n y Cajal, Ctra. Colmenar Viejo km 9,100, 28034, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palacios", 
        "givenName": "J", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1373/clinchem.2014.223040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006294869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.2016.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017380921", 
          "https://doi.org/10.1038/modpathol.2016.184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmoldx.2014.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021746223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2015.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023699296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033967678", 
          "https://doi.org/10.1038/ng.2764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.o116.059253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042520197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep20948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042878991", 
          "https://doi.org/10.1038/srep20948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature20805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045212192", 
          "https://doi.org/10.1038/nature20805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmoldx.2015.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051720295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/pdb.prot5138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060411039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/54299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071425998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-017-1125-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083395108", 
          "https://doi.org/10.1186/s12967-017-1125-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-017-1125-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083395108", 
          "https://doi.org/10.1186/s12967-017-1125-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccell.2017.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083533219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.17199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084931877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0176280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085403395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1758834017719829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090885637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1758834017719829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090885637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0181874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090913652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2017.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092131008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2017.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092501934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes9050267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104144908"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: Personalised medicine is nowadays a major objective in oncology. Molecular characterization of tumours through NGS offers the possibility to find possible therapeutic targets in a time- and cost-effective way. However, the low quality and complexity of FFPE DNA samples bring a series of disadvantages for massive parallel sequencing techniques compared to high-quality DNA samples (from blood cells, cell cultures, etc.).\nResults: We performed several experiments to understand the behaviour of FFPE DNA samples during the construction of SureSelectQXT libraries. First, we designed a quality checkpoint for FFPE DNA samples based on the quantification of their amplification capability (qcPCR). We observed that FFPE DNA samples can be classified according to DIN value and qcPCR concentration into unusable, or low-quality (LQ) and good-quality (GQ) DNA. For GQ samples, we increased the amount of input DNA to 150\u00a0ng and the digestion time to 30\u00a0min, whereas for LQ samples, we used 50\u00a0ng of DNA as input but we decreased the digestion time to 1\u00a0min. In all cases, we increased the cycles of the pre-hyb PCR to 10 but decreased the cycles of the post-hyb PCR to 8. In addition, we confirmed that using half of the volume of reagents can be beneficial. Finally, in order to obtain better results, we designed a decision flow-chart to achieve a seeding concentration of 12-14 pM for MiSeq Reagent Kit v2.\nConclusions: Our experiments allowed us to unveil the behaviour of low-quality FFPE DNA samples during the construction of SureSelectQXT libraries. Sequencing results showed that, using our modified SureSelectQXT protocol, the final percentage of usable reads for low-quality samples was increased more than three times allowing to reach median depth/million reads values of 76.35. This value is equivalent to ~\u20090.9 and ~\u20090.7 of the values obtained for good-quality FFPE and high-quality DNA respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12575-018-0084-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3711996", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023701", 
        "issn": [
          "1480-9222"
        ], 
        "name": "Biological Procedures Online", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Modified SureSelectQXT Target Enrichment Protocol for Illumina Multiplexed Sequencing of FFPE Samples", 
    "pagination": "19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ed292a4a540e0dbe5b7ec1ed435bf2ff545e6fb0343d007e72ec3359d69a994"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30337841"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100963717"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12575-018-0084-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107577450"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12575-018-0084-7", 
      "https://app.dimensions.ai/details/publication/pub.1107577450"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12575-018-0084-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0084-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0084-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0084-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0084-7'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12575-018-0084-7 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N0c874f68bf5e449ba6c04f1284ca8d70
4 schema:citation sg:pub.10.1038/modpathol.2016.184
5 sg:pub.10.1038/nature20805
6 sg:pub.10.1038/ng.2764
7 sg:pub.10.1038/srep20948
8 sg:pub.10.1186/s12967-017-1125-8
9 https://doi.org/10.1016/j.ccell.2017.01.001
10 https://doi.org/10.1016/j.cell.2015.09.033
11 https://doi.org/10.1016/j.cell.2017.09.007
12 https://doi.org/10.1016/j.cell.2017.10.014
13 https://doi.org/10.1016/j.jmoldx.2014.09.006
14 https://doi.org/10.1016/j.jmoldx.2015.06.009
15 https://doi.org/10.1074/mcp.o116.059253
16 https://doi.org/10.1101/pdb.prot5138
17 https://doi.org/10.1177/1758834017719829
18 https://doi.org/10.1371/journal.pone.0176280
19 https://doi.org/10.1371/journal.pone.0181874
20 https://doi.org/10.1373/clinchem.2014.223040
21 https://doi.org/10.18632/oncotarget.17199
22 https://doi.org/10.3390/genes9050267
23 https://doi.org/10.3791/54299
24 schema:datePublished 2018-12
25 schema:datePublishedReg 2018-12-01
26 schema:description Background: Personalised medicine is nowadays a major objective in oncology. Molecular characterization of tumours through NGS offers the possibility to find possible therapeutic targets in a time- and cost-effective way. However, the low quality and complexity of FFPE DNA samples bring a series of disadvantages for massive parallel sequencing techniques compared to high-quality DNA samples (from blood cells, cell cultures, etc.). Results: We performed several experiments to understand the behaviour of FFPE DNA samples during the construction of SureSelectQXT libraries. First, we designed a quality checkpoint for FFPE DNA samples based on the quantification of their amplification capability (qcPCR). We observed that FFPE DNA samples can be classified according to DIN value and qcPCR concentration into unusable, or low-quality (LQ) and good-quality (GQ) DNA. For GQ samples, we increased the amount of input DNA to 150 ng and the digestion time to 30 min, whereas for LQ samples, we used 50 ng of DNA as input but we decreased the digestion time to 1 min. In all cases, we increased the cycles of the pre-hyb PCR to 10 but decreased the cycles of the post-hyb PCR to 8. In addition, we confirmed that using half of the volume of reagents can be beneficial. Finally, in order to obtain better results, we designed a decision flow-chart to achieve a seeding concentration of 12-14 pM for MiSeq Reagent Kit v2. Conclusions: Our experiments allowed us to unveil the behaviour of low-quality FFPE DNA samples during the construction of SureSelectQXT libraries. Sequencing results showed that, using our modified SureSelectQXT protocol, the final percentage of usable reads for low-quality samples was increased more than three times allowing to reach median depth/million reads values of 76.35. This value is equivalent to ~ 0.9 and ~ 0.7 of the values obtained for good-quality FFPE and high-quality DNA respectively.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N85d051fe4abb448f93eeaade0d99d5d4
31 Nd4ca371a58064448a95759dc9ae1eef8
32 sg:journal.1023701
33 schema:name Modified SureSelectQXT Target Enrichment Protocol for Illumina Multiplexed Sequencing of FFPE Samples
34 schema:pagination 19
35 schema:productId N1c0a8b0abd5e4e269cd5e164bbc809b4
36 N720b6c355a2b4585ae95088ae14524a3
37 N88dde075f8b34f17bbb4bfd337647e84
38 Na6f330c1ff614a429c870592f367c0c0
39 Ne00c7ffb74804c4a8daac54c1286b286
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107577450
41 https://doi.org/10.1186/s12575-018-0084-7
42 schema:sdDatePublished 2019-04-10T16:00
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ne6cb091bcd804398ab75f23166d7950d
45 schema:url https://link.springer.com/10.1186%2Fs12575-018-0084-7
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0c874f68bf5e449ba6c04f1284ca8d70 rdf:first sg:person.01307354274.76
50 rdf:rest N89a75aa6a3c54cfea4a0e2903245c716
51 N1c0a8b0abd5e4e269cd5e164bbc809b4 schema:name nlm_unique_id
52 schema:value 100963717
53 rdf:type schema:PropertyValue
54 N720b6c355a2b4585ae95088ae14524a3 schema:name dimensions_id
55 schema:value pub.1107577450
56 rdf:type schema:PropertyValue
57 N85d051fe4abb448f93eeaade0d99d5d4 schema:volumeNumber 20
58 rdf:type schema:PublicationVolume
59 N88dde075f8b34f17bbb4bfd337647e84 schema:name doi
60 schema:value 10.1186/s12575-018-0084-7
61 rdf:type schema:PropertyValue
62 N89a75aa6a3c54cfea4a0e2903245c716 rdf:first sg:person.013302474400.84
63 rdf:rest Nf69980696d59458ab28ebe235cbb6e7a
64 N8f0c98a3cadd45d0b68196045ddde5e7 schema:affiliation https://www.grid.ac/institutes/grid.411347.4
65 schema:familyName Palacios
66 schema:givenName J
67 rdf:type schema:Person
68 N9116c2b230de4d4abdcd854314a8a3bd rdf:first Ncf970b8023d443a680e32624a331395e
69 rdf:rest Nb38804aa3e83407dae080b77f0a912a6
70 Na6f330c1ff614a429c870592f367c0c0 schema:name readcube_id
71 schema:value 2ed292a4a540e0dbe5b7ec1ed435bf2ff545e6fb0343d007e72ec3359d69a994
72 rdf:type schema:PropertyValue
73 Nb38804aa3e83407dae080b77f0a912a6 rdf:first sg:person.0665412471.07
74 rdf:rest Nd2d5184a40004bd592434a7c398e887d
75 Nc2490d701f3c4ec59caf1c6996e8d4cc rdf:first N8f0c98a3cadd45d0b68196045ddde5e7
76 rdf:rest rdf:nil
77 Ncf970b8023d443a680e32624a331395e schema:affiliation https://www.grid.ac/institutes/grid.420232.5
78 schema:familyName Muñoz
79 schema:givenName G
80 rdf:type schema:Person
81 Nd2d5184a40004bd592434a7c398e887d rdf:first sg:person.01315276733.49
82 rdf:rest Nc2490d701f3c4ec59caf1c6996e8d4cc
83 Nd4ca371a58064448a95759dc9ae1eef8 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 Ne00c7ffb74804c4a8daac54c1286b286 schema:name pubmed_id
86 schema:value 30337841
87 rdf:type schema:PropertyValue
88 Ne6cb091bcd804398ab75f23166d7950d schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nf69980696d59458ab28ebe235cbb6e7a rdf:first sg:person.01170546334.90
91 rdf:rest N9116c2b230de4d4abdcd854314a8a3bd
92 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
93 schema:name Medical and Health Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
96 schema:name Oncology and Carcinogenesis
97 rdf:type schema:DefinedTerm
98 sg:grant.3711996 http://pending.schema.org/fundedItem sg:pub.10.1186/s12575-018-0084-7
99 rdf:type schema:MonetaryGrant
100 sg:journal.1023701 schema:issn 1480-9222
101 schema:name Biological Procedures Online
102 rdf:type schema:Periodical
103 sg:person.01170546334.90 schema:affiliation https://www.grid.ac/institutes/grid.420232.5
104 schema:familyName Leskela
105 schema:givenName S
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170546334.90
107 rdf:type schema:Person
108 sg:person.01307354274.76 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
109 schema:familyName Rosa-Rosa
110 schema:givenName J. M.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307354274.76
112 rdf:type schema:Person
113 sg:person.01315276733.49 schema:affiliation https://www.grid.ac/institutes/grid.7159.a
114 schema:familyName Garrido
115 schema:givenName P
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315276733.49
117 rdf:type schema:Person
118 sg:person.013302474400.84 schema:affiliation https://www.grid.ac/institutes/grid.420232.5
119 schema:familyName Caniego-Casas
120 schema:givenName T
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013302474400.84
122 rdf:type schema:Person
123 sg:person.0665412471.07 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
124 schema:familyName del Castillo
125 schema:givenName F
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665412471.07
127 rdf:type schema:Person
128 sg:pub.10.1038/modpathol.2016.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017380921
129 https://doi.org/10.1038/modpathol.2016.184
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature20805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045212192
132 https://doi.org/10.1038/nature20805
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/ng.2764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033967678
135 https://doi.org/10.1038/ng.2764
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/srep20948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042878991
138 https://doi.org/10.1038/srep20948
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/s12967-017-1125-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083395108
141 https://doi.org/10.1186/s12967-017-1125-8
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ccell.2017.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083533219
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cell.2015.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023699296
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.cell.2017.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092131008
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.cell.2017.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092501934
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jmoldx.2014.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021746223
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jmoldx.2015.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720295
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1074/mcp.o116.059253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042520197
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1101/pdb.prot5138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060411039
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1177/1758834017719829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090885637
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1371/journal.pone.0176280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085403395
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1371/journal.pone.0181874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090913652
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1373/clinchem.2014.223040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006294869
166 rdf:type schema:CreativeWork
167 https://doi.org/10.18632/oncotarget.17199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084931877
168 rdf:type schema:CreativeWork
169 https://doi.org/10.3390/genes9050267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104144908
170 rdf:type schema:CreativeWork
171 https://doi.org/10.3791/54299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071425998
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.411347.4 schema:alternateName Hospital Universitario Ramón y Cajal
174 schema:name CIBER-ONC, Instituto de Salud Carlos III, Madrid, Spain
175 Facultad de Medicina, Universidad de Alcalá de Henares, Madrid, Spain
176 Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
177 Servicio de Anatomía Patológica, Hospital Ramón y Cajal, Ctra. Colmenar Viejo km 9,100, 28034, Madrid, Spain
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.413448.e schema:alternateName Instituto de Salud Carlos III
180 schema:name CIBER-ER, Instituto de Salud Carlos III, Madrid, Spain
181 CIBER-ONC, Instituto de Salud Carlos III, Madrid, Spain
182 Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
183 Servicio de Genética, Hospital Universitario Ramón y Cajal, Madrid, Spain
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.420232.5 schema:alternateName Instituto Ramón y Cajal de Investigación Sanitaria
186 schema:name CIBER-ONC, Instituto de Salud Carlos III, Madrid, Spain
187 Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.7159.a schema:alternateName University of Alcalá
190 schema:name Facultad de Medicina, Universidad de Alcalá de Henares, Madrid, Spain
191 Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
192 Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...