Optimization of Immunofluorescent Detection of Bone Marrow Disseminated Tumor Cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Haley D. Axelrod, Kenneth J. Pienta, Kenneth C. Valkenburg

ABSTRACT

Background: Cancer metastasis is the primary cause of cancer-related deaths and remains incurable. Current clinical methods for predicting metastatic recurrence are not sensitive enough to detect individual cancer cells in the body; therefore, current efforts are directed toward liquid biopsy-based assays to capture circulating and disseminated tumor cells (CTCs and DTCs) in the blood and bone marrow, respectively. The most promising strategy is fluorescence-based immunostaining using cancer cell-specific markers. However, despite recent efforts to develop robust processing and staining platforms, results from these platforms have been discordant among groups, particularly for DTC detection. While the choice of cancer cell-specific markers is a large factor in this discordance, we have found that marker-independent factors causing false signal are just as critical to consider. Bone marrow is particularly challenging to analyze by immunostaining because endogenous immune cell properties and bone marrow matrix components typically generate false staining. For immunostaining of whole tumor tissue containing ample cancer cells, this background staining can be overcome. Application of fluorescent-based staining for rare cells, however, is easily jeopardized by immune cells and autofluorescence that lead to false signal. Results: We have specifically found two types of background staining in bone marrow samples: autofluorescence of the tissue and non-specific binding of secondary antibodies. We systematically optimized a basic immunofluorescence protocol to eliminate this background using cancer cells spiked into human bone marrow. This enhanced the specificity of automated scanning detection software. Our optimized protocol also outperformed a commercial rare cell detection protocol in detecting candidate DTCs from metastatic patient bone marrow. Conclusions: Robust optimization to increase the signal-to-noise ratio of immunofluorescent staining of bone marrow is required in order to achieve the necessary sensitivity and specificity for rare cell detection. Background immunofluorescent staining in bone marrow causes uncertainty and inconsistency among investigators, which can be overcome by systematically addressing each contributing source. Our optimized assay eliminates sources of background signal, and is adaptable to automated staining platforms for high throughput analysis. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12575-018-0078-5

DOI

http://dx.doi.org/10.1186/s12575-018-0078-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103363543

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29988526


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe St., Marburg Building Room 121, 21287, Baltimore, MD, USA", 
            "The Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, 600 North Wolfe St., Marburg Building Room 121, 21287, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Axelrod", 
        "givenName": "Haley D.", 
        "id": "sg:person.01171161416.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171161416.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe St., Marburg Building Room 121, 21287, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pienta", 
        "givenName": "Kenneth J.", 
        "id": "sg:person.013271155377.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271155377.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe St., Marburg Building Room 121, 21287, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valkenburg", 
        "givenName": "Kenneth C.", 
        "id": "sg:person.0646716562.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646716562.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0832308100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002598337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jcp.25.11.947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003570546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.b.20485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004164588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.b.20485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004164588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr2131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004596195", 
          "https://doi.org/10.1186/bcr2131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2016.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008070548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.redox.2013.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011699243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000168854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012446336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.12000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015437452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.11191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015905482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016286671", 
          "https://doi.org/10.1038/nrc867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016286671", 
          "https://doi.org/10.1038/nrc867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019149476", 
          "https://doi.org/10.1038/nrc865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019149476", 
          "https://doi.org/10.1038/nrc865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020672025", 
          "https://doi.org/10.1038/srep00028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep13378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025459512", 
          "https://doi.org/10.1038/srep13378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature17038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026513830", 
          "https://doi.org/10.1038/nature17038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2014.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030743439", 
          "https://doi.org/10.1038/nrclinonc.2014.82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-0378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031020150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12885-015-1383-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032068427", 
          "https://doi.org/10.1186/s12885-015-1383-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12885-015-1383-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032068427", 
          "https://doi.org/10.1186/s12885-015-1383-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/28.9.7410816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034469528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/28.9.7410816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034469528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.172368799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034892668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jim.2012.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042196253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jcp.20.5.717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046020406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/9/1/016003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051137567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0090-4295(01)01191-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051682242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1541-7786.mcr-16-0436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083845230"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: Cancer metastasis is the primary cause of cancer-related deaths and remains incurable. Current clinical methods for predicting metastatic recurrence are not sensitive enough to detect individual cancer cells in the body; therefore, current efforts are directed toward liquid biopsy-based assays to capture circulating and disseminated tumor cells (CTCs and DTCs) in the blood and bone marrow, respectively. The most promising strategy is fluorescence-based immunostaining using cancer cell-specific markers. However, despite recent efforts to develop robust processing and staining platforms, results from these platforms have been discordant among groups, particularly for DTC detection. While the choice of cancer cell-specific markers is a large factor in this discordance, we have found that marker-independent factors causing false signal are just as critical to consider. Bone marrow is particularly challenging to analyze by immunostaining because endogenous immune cell properties and bone marrow matrix components typically generate false staining. For immunostaining of whole tumor tissue containing ample cancer cells, this background staining can be overcome. Application of fluorescent-based staining for rare cells, however, is easily jeopardized by immune cells and autofluorescence that lead to false signal.\nResults: We have specifically found two types of background staining in bone marrow samples: autofluorescence of the tissue and non-specific binding of secondary antibodies. We systematically optimized a basic immunofluorescence protocol to eliminate this background using cancer cells spiked into human bone marrow. This enhanced the specificity of automated scanning detection software. Our optimized protocol also outperformed a commercial rare cell detection protocol in detecting candidate DTCs from metastatic patient bone marrow.\nConclusions: Robust optimization to increase the signal-to-noise ratio of immunofluorescent staining of bone marrow is required in order to achieve the necessary sensitivity and specificity for rare cell detection. Background immunofluorescent staining in bone marrow causes uncertainty and inconsistency among investigators, which can be overcome by systematically addressing each contributing source. Our optimized assay eliminates sources of background signal, and is adaptable to automated staining platforms for high throughput analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12575-018-0078-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2435769", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2684039", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6377384", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023701", 
        "issn": [
          "1480-9222"
        ], 
        "name": "Biological Procedures Online", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Optimization of Immunofluorescent Detection of Bone Marrow Disseminated Tumor Cells", 
    "pagination": "13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "622a8c696c7f9e3e374c57572cf2bb6dff4e8f6139b0e77c0a9777f021a5ab2b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29988526"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100963717"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12575-018-0078-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103363543"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12575-018-0078-5", 
      "https://app.dimensions.ai/details/publication/pub.1103363543"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99843_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12575-018-0078-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0078-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0078-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0078-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0078-5'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12575-018-0078-5 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N471e666a54dc4b989bd38f57e030fbdd
4 schema:citation sg:pub.10.1038/nature17038
5 sg:pub.10.1038/nrc865
6 sg:pub.10.1038/nrc867
7 sg:pub.10.1038/nrclinonc.2014.82
8 sg:pub.10.1038/srep00028
9 sg:pub.10.1038/srep13378
10 sg:pub.10.1186/bcr2131
11 sg:pub.10.1186/s12885-015-1383-x
12 https://doi.org/10.1002/cyto.b.20485
13 https://doi.org/10.1016/j.copbio.2016.02.002
14 https://doi.org/10.1016/j.jim.2012.08.014
15 https://doi.org/10.1016/j.redox.2013.01.006
16 https://doi.org/10.1016/s0090-4295(01)01191-8
17 https://doi.org/10.1073/pnas.0832308100
18 https://doi.org/10.1073/pnas.172368799
19 https://doi.org/10.1088/1478-3975/9/1/016003
20 https://doi.org/10.1136/jcp.20.5.717
21 https://doi.org/10.1136/jcp.25.11.947
22 https://doi.org/10.1158/1078-0432.ccr-04-0378
23 https://doi.org/10.1158/1541-7786.mcr-16-0436
24 https://doi.org/10.1159/000168854
25 https://doi.org/10.1177/28.9.7410816
26 https://doi.org/10.18632/oncotarget.11191
27 https://doi.org/10.18632/oncotarget.12000
28 schema:datePublished 2018-12
29 schema:datePublishedReg 2018-12-01
30 schema:description Background: Cancer metastasis is the primary cause of cancer-related deaths and remains incurable. Current clinical methods for predicting metastatic recurrence are not sensitive enough to detect individual cancer cells in the body; therefore, current efforts are directed toward liquid biopsy-based assays to capture circulating and disseminated tumor cells (CTCs and DTCs) in the blood and bone marrow, respectively. The most promising strategy is fluorescence-based immunostaining using cancer cell-specific markers. However, despite recent efforts to develop robust processing and staining platforms, results from these platforms have been discordant among groups, particularly for DTC detection. While the choice of cancer cell-specific markers is a large factor in this discordance, we have found that marker-independent factors causing false signal are just as critical to consider. Bone marrow is particularly challenging to analyze by immunostaining because endogenous immune cell properties and bone marrow matrix components typically generate false staining. For immunostaining of whole tumor tissue containing ample cancer cells, this background staining can be overcome. Application of fluorescent-based staining for rare cells, however, is easily jeopardized by immune cells and autofluorescence that lead to false signal. Results: We have specifically found two types of background staining in bone marrow samples: autofluorescence of the tissue and non-specific binding of secondary antibodies. We systematically optimized a basic immunofluorescence protocol to eliminate this background using cancer cells spiked into human bone marrow. This enhanced the specificity of automated scanning detection software. Our optimized protocol also outperformed a commercial rare cell detection protocol in detecting candidate DTCs from metastatic patient bone marrow. Conclusions: Robust optimization to increase the signal-to-noise ratio of immunofluorescent staining of bone marrow is required in order to achieve the necessary sensitivity and specificity for rare cell detection. Background immunofluorescent staining in bone marrow causes uncertainty and inconsistency among investigators, which can be overcome by systematically addressing each contributing source. Our optimized assay eliminates sources of background signal, and is adaptable to automated staining platforms for high throughput analysis.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N318d566ea2d345179e77d7817accbe1d
35 N4557b7aac37742c49152b6cab1aef580
36 sg:journal.1023701
37 schema:name Optimization of Immunofluorescent Detection of Bone Marrow Disseminated Tumor Cells
38 schema:pagination 13
39 schema:productId N13a466d4a6284b11b23efc72df085cee
40 N599f7874cd0e46f09d87b3d84fda736a
41 N5e0b46636d474492acabbc473188c515
42 N9b83eaf433f142cf9b82e2fab59ba483
43 Na4ccdb33543b484faecbe17c3f878f4c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103363543
45 https://doi.org/10.1186/s12575-018-0078-5
46 schema:sdDatePublished 2019-04-11T09:42
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nbb407ed249354c7da0cd242f92411c2d
49 schema:url https://link.springer.com/10.1186%2Fs12575-018-0078-5
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N13a466d4a6284b11b23efc72df085cee schema:name readcube_id
54 schema:value 622a8c696c7f9e3e374c57572cf2bb6dff4e8f6139b0e77c0a9777f021a5ab2b
55 rdf:type schema:PropertyValue
56 N318d566ea2d345179e77d7817accbe1d schema:volumeNumber 20
57 rdf:type schema:PublicationVolume
58 N4557b7aac37742c49152b6cab1aef580 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 N471e666a54dc4b989bd38f57e030fbdd rdf:first sg:person.01171161416.07
61 rdf:rest Nc684f8d22cb54f499999d65c544d7cd4
62 N599f7874cd0e46f09d87b3d84fda736a schema:name doi
63 schema:value 10.1186/s12575-018-0078-5
64 rdf:type schema:PropertyValue
65 N5e0b46636d474492acabbc473188c515 schema:name pubmed_id
66 schema:value 29988526
67 rdf:type schema:PropertyValue
68 N9b83eaf433f142cf9b82e2fab59ba483 schema:name dimensions_id
69 schema:value pub.1103363543
70 rdf:type schema:PropertyValue
71 Na4ccdb33543b484faecbe17c3f878f4c schema:name nlm_unique_id
72 schema:value 100963717
73 rdf:type schema:PropertyValue
74 Na736a4ffeaf34942938e3c7974d618e6 rdf:first sg:person.0646716562.04
75 rdf:rest rdf:nil
76 Nbb407ed249354c7da0cd242f92411c2d schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nc684f8d22cb54f499999d65c544d7cd4 rdf:first sg:person.013271155377.15
79 rdf:rest Na736a4ffeaf34942938e3c7974d618e6
80 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
81 schema:name Medical and Health Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
84 schema:name Oncology and Carcinogenesis
85 rdf:type schema:DefinedTerm
86 sg:grant.2435769 http://pending.schema.org/fundedItem sg:pub.10.1186/s12575-018-0078-5
87 rdf:type schema:MonetaryGrant
88 sg:grant.2684039 http://pending.schema.org/fundedItem sg:pub.10.1186/s12575-018-0078-5
89 rdf:type schema:MonetaryGrant
90 sg:grant.6377384 http://pending.schema.org/fundedItem sg:pub.10.1186/s12575-018-0078-5
91 rdf:type schema:MonetaryGrant
92 sg:journal.1023701 schema:issn 1480-9222
93 schema:name Biological Procedures Online
94 rdf:type schema:Periodical
95 sg:person.01171161416.07 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
96 schema:familyName Axelrod
97 schema:givenName Haley D.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171161416.07
99 rdf:type schema:Person
100 sg:person.013271155377.15 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
101 schema:familyName Pienta
102 schema:givenName Kenneth J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271155377.15
104 rdf:type schema:Person
105 sg:person.0646716562.04 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
106 schema:familyName Valkenburg
107 schema:givenName Kenneth C.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646716562.04
109 rdf:type schema:Person
110 sg:pub.10.1038/nature17038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026513830
111 https://doi.org/10.1038/nature17038
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nrc865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019149476
114 https://doi.org/10.1038/nrc865
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nrc867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016286671
117 https://doi.org/10.1038/nrc867
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nrclinonc.2014.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030743439
120 https://doi.org/10.1038/nrclinonc.2014.82
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/srep00028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020672025
123 https://doi.org/10.1038/srep00028
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/srep13378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025459512
126 https://doi.org/10.1038/srep13378
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/bcr2131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004596195
129 https://doi.org/10.1186/bcr2131
130 rdf:type schema:CreativeWork
131 sg:pub.10.1186/s12885-015-1383-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032068427
132 https://doi.org/10.1186/s12885-015-1383-x
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/cyto.b.20485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004164588
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.copbio.2016.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008070548
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jim.2012.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042196253
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.redox.2013.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011699243
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0090-4295(01)01191-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051682242
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.0832308100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002598337
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.172368799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034892668
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1088/1478-3975/9/1/016003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051137567
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1136/jcp.20.5.717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046020406
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1136/jcp.25.11.947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003570546
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1158/1078-0432.ccr-04-0378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031020150
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1158/1541-7786.mcr-16-0436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083845230
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1159/000168854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012446336
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1177/28.9.7410816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034469528
161 rdf:type schema:CreativeWork
162 https://doi.org/10.18632/oncotarget.11191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015905482
163 rdf:type schema:CreativeWork
164 https://doi.org/10.18632/oncotarget.12000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015437452
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
167 schema:name The Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, 600 North Wolfe St., Marburg Building Room 121, 21287, Baltimore, MD, USA
168 The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe St., Marburg Building Room 121, 21287, Baltimore, MD, USA
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...