Use of RNA Immunoprecipitation Method for Determining Sinorhizobium meliloti RNA-Hfq Protein Associations In Vivo View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Mengsheng Gao, Anne Benge, Julia M. Mesa, Regina Javier, Feng-Xia Liu

ABSTRACT

Background: Soil bacterium Sinorhizobium meliloti (S. meliloti) forms an endosymbiotic partnership with Medicago truncatula (M. truncatula) roots which results in root nodules. The bacteria live within root nodules where they function to fix atmospheric N2 and supply the host plant with reduced nitrogen. The bacterial RNA-binding protein Hfq (Hfq) is an important regulator for the effectiveness of the nitrogen fixation. RNA immunoprecipitation (RIP) method is a powerful method for detecting the association of Hfq protein with specific RNA in cultured bacteria, yet a RIP method for bacteria living in root nodules remains to be described. Results: A modified S. meliloti gene encoding a His-tagged Hfq protein (HfqHis) was placed under the regulation of the native Hfq gene promoter (P hfqsm). The trans produced HfqHis protein was accumulated at its nature levels during all stages of the symbiosis, allowing RNAs that associated with the given protein to be immunoprecipitated with the anti-His antibody against the protein from root nodule lysates. RNAs that associated with the protein were selectively enriched in the immunoprecipitated sample. The RNAs were recovered by a simple method using heat and subsequently analyzed by RT-PCR. The nature of PCR products was determined by DNA sequencing. Hfq association with specific RNAs can be analyzed at different conditions (e. g. young or older root nodules) and/or in wild-type versus mutant strains. Conclusions: This article describes the RIP method for determining Sinorhizobium meliloti RNA-Hfq associations in vivo. It is also applicable to other rhizobia living in planta, although some tissue-specific modification related to sample disruption and homogenization may be needed. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12575-018-0075-8

DOI

http://dx.doi.org/10.1186/s12575-018-0075-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103308716

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29743820


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, 32610, Gainesville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Mengsheng", 
        "id": "sg:person.01220670534.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220670534.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, 32610, Gainesville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benge", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, 32610, Gainesville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mesa", 
        "givenName": "Julia M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, 32610, Gainesville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Javier", 
        "givenName": "Regina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "Department of Plant Genetics and Breeding, China Agricultural University, 100193, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Feng-Xia", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.91.11.4663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000620820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(95)00584-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001972992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/rna.18643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004229680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.6.2.215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004310155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-10-71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005014196", 
          "https://doi.org/10.1186/1471-2180-10-71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.01427-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006148450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00203-011-0701-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006905357", 
          "https://doi.org/10.1007/s00203-011-0701-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007050272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007429962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/ert334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009029167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010148817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2009.09.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010430666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2007.05978.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017628247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2013.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019730794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2013.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019730794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2009.00205.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020250173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.106.078691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020667983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1758-2229.12235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021059715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0055156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024731818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes2040925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038220385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2007.05991.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039813175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0068147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039985107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0407269101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041694346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.8.10.1885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044836035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044992217", 
          "https://doi.org/10.1186/1471-2164-11-245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.017004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046579069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2008.03519.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048183131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2007.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049626673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0600912103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053386976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi-09-16-0182-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060077960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi-21-2-0162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060078706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi-23-4-0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060078994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi.2004.17.3.292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060080794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-84-1-188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060375337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1060966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3869640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070467629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/rna.28239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072310262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083035020", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro.2017.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100694712", 
          "https://doi.org/10.1038/nrmicro.2017.171"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: Soil bacterium Sinorhizobium meliloti (S. meliloti) forms an endosymbiotic partnership with Medicago truncatula (M. truncatula) roots which results in root nodules. The bacteria live within root nodules where they function to fix atmospheric N2 and supply the host plant with reduced nitrogen. The bacterial RNA-binding protein Hfq (Hfq) is an important regulator for the effectiveness of the nitrogen fixation. RNA immunoprecipitation (RIP) method is a powerful method for detecting the association of Hfq protein with specific RNA in cultured bacteria, yet a RIP method for bacteria living in root nodules remains to be described.\nResults: A modified S. meliloti gene encoding a His-tagged Hfq protein (HfqHis) was placed under the regulation of the native Hfq gene promoter (P hfqsm). The trans produced HfqHis protein was accumulated at its nature levels during all stages of the symbiosis, allowing RNAs that associated with the given protein to be immunoprecipitated with the anti-His antibody against the protein from root nodule lysates. RNAs that associated with the protein were selectively enriched in the immunoprecipitated sample. The RNAs were recovered by a simple method using heat and subsequently analyzed by RT-PCR. The nature of PCR products was determined by DNA sequencing. Hfq association with specific RNAs can be analyzed at different conditions (e. g. young or older root nodules) and/or in wild-type versus mutant strains.\nConclusions: This article describes the RIP method for determining Sinorhizobium meliloti RNA-Hfq associations in vivo. It is also applicable to other rhizobia living in planta, although some tissue-specific modification related to sample disruption and homogenization may be needed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12575-018-0075-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023701", 
        "issn": [
          "1480-9222"
        ], 
        "name": "Biological Procedures Online", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Use of RNA Immunoprecipitation Method for Determining Sinorhizobium meliloti RNA-Hfq Protein Associations In Vivo", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9a6aab7ed122de98789f4de67d837d5e15c8881b803c0c127ade1864c8b00aa6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29743820"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100963717"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12575-018-0075-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103308716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12575-018-0075-8", 
      "https://app.dimensions.ai/details/publication/pub.1103308716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113667_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12575-018-0075-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0075-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0075-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0075-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12575-018-0075-8'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12575-018-0075-8 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ndb2d8ecf752845a7a64bd5560c78a6de
4 schema:citation sg:pub.10.1007/s00203-011-0701-1
5 sg:pub.10.1038/nrmicro.2017.171
6 sg:pub.10.1186/1471-2164-11-245
7 sg:pub.10.1186/1471-2180-10-71
8 https://app.dimensions.ai/details/publication/pub.1083035020
9 https://doi.org/10.1006/meth.2001.1262
10 https://doi.org/10.1016/0378-1119(95)00584-1
11 https://doi.org/10.1016/j.bbrc.2009.09.125
12 https://doi.org/10.1016/j.cub.2005.03.007
13 https://doi.org/10.1016/j.mib.2007.03.015
14 https://doi.org/10.1016/j.ymeth.2013.11.001
15 https://doi.org/10.1073/pnas.0407269101
16 https://doi.org/10.1073/pnas.0600912103
17 https://doi.org/10.1073/pnas.91.11.4663
18 https://doi.org/10.1093/bioinformatics/bts631
19 https://doi.org/10.1093/jxb/ert334
20 https://doi.org/10.1094/mpmi-09-16-0182-r
21 https://doi.org/10.1094/mpmi-21-2-0162
22 https://doi.org/10.1094/mpmi-23-4-0355
23 https://doi.org/10.1094/mpmi.2004.17.3.292
24 https://doi.org/10.1099/00221287-84-1-188
25 https://doi.org/10.1104/pp.017004
26 https://doi.org/10.1104/pp.106.078691
27 https://doi.org/10.1105/tpc.6.2.215
28 https://doi.org/10.1105/tpc.8.10.1885
29 https://doi.org/10.1111/1758-2229.12235
30 https://doi.org/10.1111/j.1365-2958.2007.05978.x
31 https://doi.org/10.1111/j.1365-2958.2007.05991.x
32 https://doi.org/10.1111/j.1365-313x.2008.03519.x
33 https://doi.org/10.1111/j.1574-6976.2009.00205.x
34 https://doi.org/10.1126/science.1060966
35 https://doi.org/10.1128/jb.01427-09
36 https://doi.org/10.1371/journal.pgen.1000163
37 https://doi.org/10.1371/journal.pone.0055156
38 https://doi.org/10.1371/journal.pone.0068147
39 https://doi.org/10.2307/3869640
40 https://doi.org/10.3390/genes2040925
41 https://doi.org/10.4161/rna.18643
42 https://doi.org/10.4161/rna.28239
43 schema:datePublished 2018-12
44 schema:datePublishedReg 2018-12-01
45 schema:description Background: Soil bacterium Sinorhizobium meliloti (S. meliloti) forms an endosymbiotic partnership with Medicago truncatula (M. truncatula) roots which results in root nodules. The bacteria live within root nodules where they function to fix atmospheric N2 and supply the host plant with reduced nitrogen. The bacterial RNA-binding protein Hfq (Hfq) is an important regulator for the effectiveness of the nitrogen fixation. RNA immunoprecipitation (RIP) method is a powerful method for detecting the association of Hfq protein with specific RNA in cultured bacteria, yet a RIP method for bacteria living in root nodules remains to be described. Results: A modified S. meliloti gene encoding a His-tagged Hfq protein (HfqHis) was placed under the regulation of the native Hfq gene promoter (P hfqsm). The trans produced HfqHis protein was accumulated at its nature levels during all stages of the symbiosis, allowing RNAs that associated with the given protein to be immunoprecipitated with the anti-His antibody against the protein from root nodule lysates. RNAs that associated with the protein were selectively enriched in the immunoprecipitated sample. The RNAs were recovered by a simple method using heat and subsequently analyzed by RT-PCR. The nature of PCR products was determined by DNA sequencing. Hfq association with specific RNAs can be analyzed at different conditions (e. g. young or older root nodules) and/or in wild-type versus mutant strains. Conclusions: This article describes the RIP method for determining Sinorhizobium meliloti RNA-Hfq associations in vivo. It is also applicable to other rhizobia living in planta, although some tissue-specific modification related to sample disruption and homogenization may be needed.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N53e52eedeb804b4c8a6597c353a8a891
50 N944dd9ed4c4d4e4c8d18df1354bdd4d0
51 sg:journal.1023701
52 schema:name Use of RNA Immunoprecipitation Method for Determining Sinorhizobium meliloti RNA-Hfq Protein Associations In Vivo
53 schema:pagination 8
54 schema:productId N20feabcb410d4cfca6a0cf4b681c89c1
55 N222f41f1512e44e7bebf476187c16bbf
56 N3f27d1eeb7af4d38ae1343c60a393745
57 N55afa8a269314c879a80c542e9a5f5b4
58 Nffeeef2341d74dc9abef682e7bdf0246
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103308716
60 https://doi.org/10.1186/s12575-018-0075-8
61 schema:sdDatePublished 2019-04-11T10:35
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nee725217671a47b1be56a0119fc50c5e
64 schema:url https://link.springer.com/10.1186%2Fs12575-018-0075-8
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N00347f02f78143f4b927d49c0e9e9d71 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
69 schema:familyName Benge
70 schema:givenName Anne
71 rdf:type schema:Person
72 N0b9b3af1da9e4ddb8577b1343278f21a schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
73 schema:familyName Liu
74 schema:givenName Feng-Xia
75 rdf:type schema:Person
76 N0f13a601724f46c59007ed289ab50bac rdf:first N0b9b3af1da9e4ddb8577b1343278f21a
77 rdf:rest rdf:nil
78 N14309932d431486d86ebda58576e8194 rdf:first N43c725f5f2c0495c8e49edda25c73b0c
79 rdf:rest N0f13a601724f46c59007ed289ab50bac
80 N20feabcb410d4cfca6a0cf4b681c89c1 schema:name dimensions_id
81 schema:value pub.1103308716
82 rdf:type schema:PropertyValue
83 N222f41f1512e44e7bebf476187c16bbf schema:name nlm_unique_id
84 schema:value 100963717
85 rdf:type schema:PropertyValue
86 N3f27d1eeb7af4d38ae1343c60a393745 schema:name doi
87 schema:value 10.1186/s12575-018-0075-8
88 rdf:type schema:PropertyValue
89 N43c725f5f2c0495c8e49edda25c73b0c schema:affiliation https://www.grid.ac/institutes/grid.15276.37
90 schema:familyName Javier
91 schema:givenName Regina
92 rdf:type schema:Person
93 N53e52eedeb804b4c8a6597c353a8a891 schema:volumeNumber 20
94 rdf:type schema:PublicationVolume
95 N55afa8a269314c879a80c542e9a5f5b4 schema:name pubmed_id
96 schema:value 29743820
97 rdf:type schema:PropertyValue
98 N6b8b45bc17d34364b3d05275544daeb6 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
99 schema:familyName Mesa
100 schema:givenName Julia M.
101 rdf:type schema:Person
102 N766fddb60cc1453bbbff5df102daea63 rdf:first N6b8b45bc17d34364b3d05275544daeb6
103 rdf:rest N14309932d431486d86ebda58576e8194
104 N944dd9ed4c4d4e4c8d18df1354bdd4d0 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 Ndb2d8ecf752845a7a64bd5560c78a6de rdf:first sg:person.01220670534.12
107 rdf:rest Nf79048cc4e124591b2ec5c7d5bf537e2
108 Nee725217671a47b1be56a0119fc50c5e schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nf79048cc4e124591b2ec5c7d5bf537e2 rdf:first N00347f02f78143f4b927d49c0e9e9d71
111 rdf:rest N766fddb60cc1453bbbff5df102daea63
112 Nffeeef2341d74dc9abef682e7bdf0246 schema:name readcube_id
113 schema:value 9a6aab7ed122de98789f4de67d837d5e15c8881b803c0c127ade1864c8b00aa6
114 rdf:type schema:PropertyValue
115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
116 schema:name Biological Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
119 schema:name Genetics
120 rdf:type schema:DefinedTerm
121 sg:journal.1023701 schema:issn 1480-9222
122 schema:name Biological Procedures Online
123 rdf:type schema:Periodical
124 sg:person.01220670534.12 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
125 schema:familyName Gao
126 schema:givenName Mengsheng
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220670534.12
128 rdf:type schema:Person
129 sg:pub.10.1007/s00203-011-0701-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006905357
130 https://doi.org/10.1007/s00203-011-0701-1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nrmicro.2017.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100694712
133 https://doi.org/10.1038/nrmicro.2017.171
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/1471-2164-11-245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044992217
136 https://doi.org/10.1186/1471-2164-11-245
137 rdf:type schema:CreativeWork
138 sg:pub.10.1186/1471-2180-10-71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005014196
139 https://doi.org/10.1186/1471-2180-10-71
140 rdf:type schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1083035020 schema:CreativeWork
142 https://doi.org/10.1006/meth.2001.1262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027621591
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0378-1119(95)00584-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001972992
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.bbrc.2009.09.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010430666
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.cub.2005.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010148817
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.mib.2007.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049626673
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ymeth.2013.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019730794
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1073/pnas.0407269101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041694346
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1073/pnas.0600912103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053386976
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.91.11.4663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000620820
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/bioinformatics/bts631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007429962
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/jxb/ert334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009029167
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1094/mpmi-09-16-0182-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1060077960
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1094/mpmi-21-2-0162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060078706
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1094/mpmi-23-4-0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060078994
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1094/mpmi.2004.17.3.292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060080794
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1099/00221287-84-1-188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060375337
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1104/pp.017004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046579069
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1104/pp.106.078691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020667983
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1105/tpc.6.2.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004310155
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1105/tpc.8.10.1885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044836035
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/1758-2229.12235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021059715
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1111/j.1365-2958.2007.05978.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017628247
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1111/j.1365-2958.2007.05991.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039813175
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/j.1365-313x.2008.03519.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048183131
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/j.1574-6976.2009.00205.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020250173
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.1060966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445052
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1128/jb.01427-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006148450
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pgen.1000163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007050272
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pone.0055156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024731818
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0068147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039985107
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2307/3869640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070467629
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3390/genes2040925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038220385
205 rdf:type schema:CreativeWork
206 https://doi.org/10.4161/rna.18643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004229680
207 rdf:type schema:CreativeWork
208 https://doi.org/10.4161/rna.28239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072310262
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
211 schema:name Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, 32610, Gainesville, USA
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.22935.3f schema:alternateName China Agricultural University
214 schema:name Department of Plant Genetics and Breeding, China Agricultural University, 100193, Beijing, People’s Republic of China
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...