Evaluation of a momentum based impact model in frontal car collisions for the prospective assessment of ADAS View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Stefan Smit, Ernst Tomasch, Harald Kolk, Michael Alois Plank, Jürgen Gugler, Hannes Glaser

ABSTRACT

The advent of active safety systems calls for the development of appropriate testing methods that are able to assess their capabilities to avoid accidents or lower impact speeds and thus, to mitigate the injury severity. Up to now the assessment is mostly based on the decrease of the collision speed due to CMS (collision mitigation systems). In order to assess the effects on injury severity developing methods, that are able to predict collision parameters correlating with the risk of getting injured, such as delta-v, for different impact situations is a mandatory task. In this study a momentum based impact model is assessed in terms of reliability to solve the collision mechanics and therefore to predict delta-v for frontal car collisions. Real accidents were re-simulated using pre-defined input parameters for the impact model (virtual forward simulation – VFS). Subsequently the impact model was analyzed for its sensitivity to specific input parameters. It was shown that VFS works for full impacts while improvements and optimizations are required for impacts that include a sliding movement in the contact zone of the vehicles. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3

DOI

http://dx.doi.org/10.1186/s12544-018-0343-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111155305


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smit", 
        "givenName": "Stefan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomasch", 
        "givenName": "Ernst", 
        "id": "sg:person.0703015667.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703015667.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kolk", 
        "givenName": "Harald", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plank", 
        "givenName": "Michael Alois", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gugler", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.013245711035.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245711035.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Consultant for accident reconstruction, Limbergstra\u00dfe 54, 3500, Krems a.d. Donau, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glaser", 
        "givenName": "Hannes", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-30090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001368971", 
          "https://doi.org/10.1007/978-3-642-30090-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001368971", 
          "https://doi.org/10.1007/978-3-642-30090-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2006.06.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020921136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0094-114x(02)00045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033283624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047526536", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-83030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047526536", 
          "https://doi.org/10.1007/978-3-322-83030-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-83030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047526536", 
          "https://doi.org/10.1007/978-3-322-83030-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-01594-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048631120", 
          "https://doi.org/10.1007/978-3-658-01594-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-01594-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048631120", 
          "https://doi.org/10.1007/978-3-658-01594-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-16143-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085418889", 
          "https://doi.org/10.1007/978-3-658-16143-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/980373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099386790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/960885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099396723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/960886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099396884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/870045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099415209"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The advent of active safety systems calls for the development of appropriate testing methods that are able to assess their capabilities to avoid accidents or lower impact speeds and thus, to mitigate the injury severity. Up to now the assessment is mostly based on the decrease of the collision speed due to CMS (collision mitigation systems). In order to assess the effects on injury severity developing methods, that are able to predict collision parameters correlating with the risk of getting injured, such as delta-v, for different impact situations is a mandatory task. In this study a momentum based impact model is assessed in terms of reliability to solve the collision mechanics and therefore to predict delta-v for frontal car collisions. Real accidents were re-simulated using pre-defined input parameters for the impact model (virtual forward simulation \u2013 VFS). Subsequently the impact model was analyzed for its sensitivity to specific input parameters. It was shown that VFS works for full impacts while improvements and optimizations are required for impacts that include a sliding movement in the contact zone of the vehicles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12544-018-0343-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136077", 
        "issn": [
          "1867-0717", 
          "1866-8887"
        ], 
        "name": "European Transport Research Review", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Evaluation of a momentum based impact model in frontal car collisions for the prospective assessment of ADAS", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b8f8f0fa08f8778f59e5dcaac622b54ef134449aeafd1b93f3cbf6b43cb4ee2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12544-018-0343-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111155305"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12544-018-0343-3", 
      "https://app.dimensions.ai/details/publication/pub.1111155305"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55475_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12544-018-0343-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12544-018-0343-3 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N975de4e0a2de415294cca09503bae91b
4 schema:citation sg:pub.10.1007/978-3-322-83030-2
5 sg:pub.10.1007/978-3-642-30090-5
6 sg:pub.10.1007/978-3-658-01594-7
7 sg:pub.10.1007/978-3-658-16143-9
8 https://app.dimensions.ai/details/publication/pub.1047526536
9 https://doi.org/10.1016/j.forsciint.2006.06.061
10 https://doi.org/10.1016/s0094-114x(02)00045-9
11 https://doi.org/10.4271/870045
12 https://doi.org/10.4271/960885
13 https://doi.org/10.4271/960886
14 https://doi.org/10.4271/980373
15 schema:datePublished 2019-12
16 schema:datePublishedReg 2019-12-01
17 schema:description The advent of active safety systems calls for the development of appropriate testing methods that are able to assess their capabilities to avoid accidents or lower impact speeds and thus, to mitigate the injury severity. Up to now the assessment is mostly based on the decrease of the collision speed due to CMS (collision mitigation systems). In order to assess the effects on injury severity developing methods, that are able to predict collision parameters correlating with the risk of getting injured, such as delta-v, for different impact situations is a mandatory task. In this study a momentum based impact model is assessed in terms of reliability to solve the collision mechanics and therefore to predict delta-v for frontal car collisions. Real accidents were re-simulated using pre-defined input parameters for the impact model (virtual forward simulation – VFS). Subsequently the impact model was analyzed for its sensitivity to specific input parameters. It was shown that VFS works for full impacts while improvements and optimizations are required for impacts that include a sliding movement in the contact zone of the vehicles.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N8544045dc1264904808921d4f8eb1733
22 Nf30cf62de8b24eb1bd20a1e649a2e818
23 sg:journal.1136077
24 schema:name Evaluation of a momentum based impact model in frontal car collisions for the prospective assessment of ADAS
25 schema:pagination 2
26 schema:productId N2e90560ec6534ec680cdb99839fd2dfe
27 N2ee1b544bed54e188966039bbb9cb9a3
28 Nf9a51c8d4ece4576bcdf991a67962ffb
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111155305
30 https://doi.org/10.1186/s12544-018-0343-3
31 schema:sdDatePublished 2019-04-11T08:34
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nfedd59b7c6104cbf89bc53574ed37d97
34 schema:url https://link.springer.com/10.1186%2Fs12544-018-0343-3
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N010115223abf4d5da7a8e57faf0e6bbf rdf:first Nca342ee8c6f54703939cb856375f3603
39 rdf:rest rdf:nil
40 N034f0e65f15d4aa48f6c2de50bfb1ac7 rdf:first sg:person.0703015667.54
41 rdf:rest N21f6acd2e9af4200bb5414b36f261826
42 N1f242ddb91d3480284ce821062e57a5e rdf:first Na17091bb08694a68b4675b963f318f3c
43 rdf:rest Nab732fc56ed74242956038f90c2d21e1
44 N21f6acd2e9af4200bb5414b36f261826 rdf:first Nef0ee75c13924150b2038f64fc858194
45 rdf:rest N1f242ddb91d3480284ce821062e57a5e
46 N2e90560ec6534ec680cdb99839fd2dfe schema:name doi
47 schema:value 10.1186/s12544-018-0343-3
48 rdf:type schema:PropertyValue
49 N2ee1b544bed54e188966039bbb9cb9a3 schema:name dimensions_id
50 schema:value pub.1111155305
51 rdf:type schema:PropertyValue
52 N8544045dc1264904808921d4f8eb1733 schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 N975de4e0a2de415294cca09503bae91b rdf:first Nc601dcb2ca1f45fd8a2b53db196ecb3d
55 rdf:rest N034f0e65f15d4aa48f6c2de50bfb1ac7
56 Na17091bb08694a68b4675b963f318f3c schema:affiliation https://www.grid.ac/institutes/grid.410413.3
57 schema:familyName Plank
58 schema:givenName Michael Alois
59 rdf:type schema:Person
60 Nab732fc56ed74242956038f90c2d21e1 rdf:first sg:person.013245711035.53
61 rdf:rest N010115223abf4d5da7a8e57faf0e6bbf
62 Nc601dcb2ca1f45fd8a2b53db196ecb3d schema:affiliation https://www.grid.ac/institutes/grid.410413.3
63 schema:familyName Smit
64 schema:givenName Stefan
65 rdf:type schema:Person
66 Nca342ee8c6f54703939cb856375f3603 schema:affiliation Ncede7ef86ed34763828b818e93af3fd6
67 schema:familyName Glaser
68 schema:givenName Hannes
69 rdf:type schema:Person
70 Ncede7ef86ed34763828b818e93af3fd6 schema:name Consultant for accident reconstruction, Limbergstraße 54, 3500, Krems a.d. Donau, Austria
71 rdf:type schema:Organization
72 Nef0ee75c13924150b2038f64fc858194 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
73 schema:familyName Kolk
74 schema:givenName Harald
75 rdf:type schema:Person
76 Nf30cf62de8b24eb1bd20a1e649a2e818 schema:volumeNumber 11
77 rdf:type schema:PublicationVolume
78 Nf9a51c8d4ece4576bcdf991a67962ffb schema:name readcube_id
79 schema:value 9b8f8f0fa08f8778f59e5dcaac622b54ef134449aeafd1b93f3cbf6b43cb4ee2
80 rdf:type schema:PropertyValue
81 Nfedd59b7c6104cbf89bc53574ed37d97 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
84 schema:name Medical and Health Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
87 schema:name Public Health and Health Services
88 rdf:type schema:DefinedTerm
89 sg:journal.1136077 schema:issn 1866-8887
90 1867-0717
91 schema:name European Transport Research Review
92 rdf:type schema:Periodical
93 sg:person.013245711035.53 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
94 schema:familyName Gugler
95 schema:givenName Jürgen
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245711035.53
97 rdf:type schema:Person
98 sg:person.0703015667.54 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
99 schema:familyName Tomasch
100 schema:givenName Ernst
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703015667.54
102 rdf:type schema:Person
103 sg:pub.10.1007/978-3-322-83030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047526536
104 https://doi.org/10.1007/978-3-322-83030-2
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-642-30090-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001368971
107 https://doi.org/10.1007/978-3-642-30090-5
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-658-01594-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048631120
110 https://doi.org/10.1007/978-3-658-01594-7
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-658-16143-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085418889
113 https://doi.org/10.1007/978-3-658-16143-9
114 rdf:type schema:CreativeWork
115 https://app.dimensions.ai/details/publication/pub.1047526536 schema:CreativeWork
116 https://doi.org/10.1016/j.forsciint.2006.06.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020921136
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0094-114x(02)00045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033283624
119 rdf:type schema:CreativeWork
120 https://doi.org/10.4271/870045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099415209
121 rdf:type schema:CreativeWork
122 https://doi.org/10.4271/960885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099396723
123 rdf:type schema:CreativeWork
124 https://doi.org/10.4271/960886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099396884
125 rdf:type schema:CreativeWork
126 https://doi.org/10.4271/980373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099386790
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
129 schema:name Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...