Evaluation of a momentum based impact model in frontal car collisions for the prospective assessment of ADAS View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Stefan Smit, Ernst Tomasch, Harald Kolk, Michael Alois Plank, Jürgen Gugler, Hannes Glaser

ABSTRACT

The advent of active safety systems calls for the development of appropriate testing methods that are able to assess their capabilities to avoid accidents or lower impact speeds and thus, to mitigate the injury severity. Up to now the assessment is mostly based on the decrease of the collision speed due to CMS (collision mitigation systems). In order to assess the effects on injury severity developing methods, that are able to predict collision parameters correlating with the risk of getting injured, such as delta-v, for different impact situations is a mandatory task. In this study a momentum based impact model is assessed in terms of reliability to solve the collision mechanics and therefore to predict delta-v for frontal car collisions. Real accidents were re-simulated using pre-defined input parameters for the impact model (virtual forward simulation – VFS). Subsequently the impact model was analyzed for its sensitivity to specific input parameters. It was shown that VFS works for full impacts while improvements and optimizations are required for impacts that include a sliding movement in the contact zone of the vehicles. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3

DOI

http://dx.doi.org/10.1186/s12544-018-0343-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111155305


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smit", 
        "givenName": "Stefan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomasch", 
        "givenName": "Ernst", 
        "id": "sg:person.0703015667.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703015667.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kolk", 
        "givenName": "Harald", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plank", 
        "givenName": "Michael Alois", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gugler", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.013245711035.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245711035.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Consultant for accident reconstruction, Limbergstra\u00dfe 54, 3500, Krems a.d. Donau, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glaser", 
        "givenName": "Hannes", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-30090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001368971", 
          "https://doi.org/10.1007/978-3-642-30090-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001368971", 
          "https://doi.org/10.1007/978-3-642-30090-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2006.06.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020921136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0094-114x(02)00045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033283624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047526536", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-83030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047526536", 
          "https://doi.org/10.1007/978-3-322-83030-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-83030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047526536", 
          "https://doi.org/10.1007/978-3-322-83030-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-01594-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048631120", 
          "https://doi.org/10.1007/978-3-658-01594-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-01594-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048631120", 
          "https://doi.org/10.1007/978-3-658-01594-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-16143-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085418889", 
          "https://doi.org/10.1007/978-3-658-16143-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/980373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099386790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/960885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099396723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/960886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099396884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/870045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099415209"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The advent of active safety systems calls for the development of appropriate testing methods that are able to assess their capabilities to avoid accidents or lower impact speeds and thus, to mitigate the injury severity. Up to now the assessment is mostly based on the decrease of the collision speed due to CMS (collision mitigation systems). In order to assess the effects on injury severity developing methods, that are able to predict collision parameters correlating with the risk of getting injured, such as delta-v, for different impact situations is a mandatory task. In this study a momentum based impact model is assessed in terms of reliability to solve the collision mechanics and therefore to predict delta-v for frontal car collisions. Real accidents were re-simulated using pre-defined input parameters for the impact model (virtual forward simulation \u2013 VFS). Subsequently the impact model was analyzed for its sensitivity to specific input parameters. It was shown that VFS works for full impacts while improvements and optimizations are required for impacts that include a sliding movement in the contact zone of the vehicles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12544-018-0343-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136077", 
        "issn": [
          "1867-0717", 
          "1866-8887"
        ], 
        "name": "European Transport Research Review", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Evaluation of a momentum based impact model in frontal car collisions for the prospective assessment of ADAS", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b8f8f0fa08f8778f59e5dcaac622b54ef134449aeafd1b93f3cbf6b43cb4ee2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12544-018-0343-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111155305"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12544-018-0343-3", 
      "https://app.dimensions.ai/details/publication/pub.1111155305"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55475_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12544-018-0343-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12544-018-0343-3'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12544-018-0343-3 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N4f0047c01c444b069a44bcf21aab022a
4 schema:citation sg:pub.10.1007/978-3-322-83030-2
5 sg:pub.10.1007/978-3-642-30090-5
6 sg:pub.10.1007/978-3-658-01594-7
7 sg:pub.10.1007/978-3-658-16143-9
8 https://app.dimensions.ai/details/publication/pub.1047526536
9 https://doi.org/10.1016/j.forsciint.2006.06.061
10 https://doi.org/10.1016/s0094-114x(02)00045-9
11 https://doi.org/10.4271/870045
12 https://doi.org/10.4271/960885
13 https://doi.org/10.4271/960886
14 https://doi.org/10.4271/980373
15 schema:datePublished 2019-12
16 schema:datePublishedReg 2019-12-01
17 schema:description The advent of active safety systems calls for the development of appropriate testing methods that are able to assess their capabilities to avoid accidents or lower impact speeds and thus, to mitigate the injury severity. Up to now the assessment is mostly based on the decrease of the collision speed due to CMS (collision mitigation systems). In order to assess the effects on injury severity developing methods, that are able to predict collision parameters correlating with the risk of getting injured, such as delta-v, for different impact situations is a mandatory task. In this study a momentum based impact model is assessed in terms of reliability to solve the collision mechanics and therefore to predict delta-v for frontal car collisions. Real accidents were re-simulated using pre-defined input parameters for the impact model (virtual forward simulation – VFS). Subsequently the impact model was analyzed for its sensitivity to specific input parameters. It was shown that VFS works for full impacts while improvements and optimizations are required for impacts that include a sliding movement in the contact zone of the vehicles.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf Nc365d3e711124faa870ddb06c92363dc
22 Nf69b82713a724e7982e58c1c425f1fbf
23 sg:journal.1136077
24 schema:name Evaluation of a momentum based impact model in frontal car collisions for the prospective assessment of ADAS
25 schema:pagination 2
26 schema:productId N90f0fcb99cb8477e81ecc3f4c9e092a3
27 Nb8878e58f7604c849bd7999f3953b1d3
28 Nc529593d45b84a56bf11e5ae0791e5f2
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111155305
30 https://doi.org/10.1186/s12544-018-0343-3
31 schema:sdDatePublished 2019-04-11T08:34
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nb82f6b5657224d759e33a1a335f2f214
34 schema:url https://link.springer.com/10.1186%2Fs12544-018-0343-3
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N2133b7cf1ca943309d84376c7f1bccbe schema:affiliation https://www.grid.ac/institutes/grid.410413.3
39 schema:familyName Plank
40 schema:givenName Michael Alois
41 rdf:type schema:Person
42 N34e4213da73f485db0cb96faff1eb083 rdf:first sg:person.0703015667.54
43 rdf:rest N979b6156723d445885542733cb152110
44 N35ae73dd739c482c9cd754e5b01a25f2 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
45 schema:familyName Smit
46 schema:givenName Stefan
47 rdf:type schema:Person
48 N3bbf22d5230c4560822114ff950a5a88 schema:affiliation N977192525ba944048a7e03422625e1cf
49 schema:familyName Glaser
50 schema:givenName Hannes
51 rdf:type schema:Person
52 N4f0047c01c444b069a44bcf21aab022a rdf:first N35ae73dd739c482c9cd754e5b01a25f2
53 rdf:rest N34e4213da73f485db0cb96faff1eb083
54 N65ac9e6c0ed840d7bcdb5e562dcdeae1 rdf:first N2133b7cf1ca943309d84376c7f1bccbe
55 rdf:rest Nc9b6aa8283584f868b37e3f9bb387e48
56 N90f0fcb99cb8477e81ecc3f4c9e092a3 schema:name doi
57 schema:value 10.1186/s12544-018-0343-3
58 rdf:type schema:PropertyValue
59 N977192525ba944048a7e03422625e1cf schema:name Consultant for accident reconstruction, Limbergstraße 54, 3500, Krems a.d. Donau, Austria
60 rdf:type schema:Organization
61 N979b6156723d445885542733cb152110 rdf:first Ncb21682d003242e5aa1c6b84c4af0e2d
62 rdf:rest N65ac9e6c0ed840d7bcdb5e562dcdeae1
63 Nb82f6b5657224d759e33a1a335f2f214 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nb8878e58f7604c849bd7999f3953b1d3 schema:name dimensions_id
66 schema:value pub.1111155305
67 rdf:type schema:PropertyValue
68 Nc365d3e711124faa870ddb06c92363dc schema:volumeNumber 11
69 rdf:type schema:PublicationVolume
70 Nc529593d45b84a56bf11e5ae0791e5f2 schema:name readcube_id
71 schema:value 9b8f8f0fa08f8778f59e5dcaac622b54ef134449aeafd1b93f3cbf6b43cb4ee2
72 rdf:type schema:PropertyValue
73 Nc9b6aa8283584f868b37e3f9bb387e48 rdf:first sg:person.013245711035.53
74 rdf:rest Nea06eb2b8f1a4011b6cf963763ca3f63
75 Ncb21682d003242e5aa1c6b84c4af0e2d schema:affiliation https://www.grid.ac/institutes/grid.410413.3
76 schema:familyName Kolk
77 schema:givenName Harald
78 rdf:type schema:Person
79 Nea06eb2b8f1a4011b6cf963763ca3f63 rdf:first N3bbf22d5230c4560822114ff950a5a88
80 rdf:rest rdf:nil
81 Nf69b82713a724e7982e58c1c425f1fbf schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
84 schema:name Medical and Health Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
87 schema:name Public Health and Health Services
88 rdf:type schema:DefinedTerm
89 sg:journal.1136077 schema:issn 1866-8887
90 1867-0717
91 schema:name European Transport Research Review
92 rdf:type schema:Periodical
93 sg:person.013245711035.53 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
94 schema:familyName Gugler
95 schema:givenName Jürgen
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245711035.53
97 rdf:type schema:Person
98 sg:person.0703015667.54 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
99 schema:familyName Tomasch
100 schema:givenName Ernst
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703015667.54
102 rdf:type schema:Person
103 sg:pub.10.1007/978-3-322-83030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047526536
104 https://doi.org/10.1007/978-3-322-83030-2
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-642-30090-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001368971
107 https://doi.org/10.1007/978-3-642-30090-5
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-658-01594-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048631120
110 https://doi.org/10.1007/978-3-658-01594-7
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-658-16143-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085418889
113 https://doi.org/10.1007/978-3-658-16143-9
114 rdf:type schema:CreativeWork
115 https://app.dimensions.ai/details/publication/pub.1047526536 schema:CreativeWork
116 https://doi.org/10.1016/j.forsciint.2006.06.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020921136
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0094-114x(02)00045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033283624
119 rdf:type schema:CreativeWork
120 https://doi.org/10.4271/870045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099415209
121 rdf:type schema:CreativeWork
122 https://doi.org/10.4271/960885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099396723
123 rdf:type schema:CreativeWork
124 https://doi.org/10.4271/960886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099396884
125 rdf:type schema:CreativeWork
126 https://doi.org/10.4271/980373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099386790
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
129 schema:name Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 23/I, 8010, Graz, Austria
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...