A comparison of log Kow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Geoff Hodges, Charles Eadsforth, Bart Bossuyt, Alain Bouvy, Marie-Helene Enrici, Marc Geurts, Matthias Kotthoff, Eleanor Michie, Dennis Miller, Josef Müller, Gunter Oetter, Jayne Roberts, Diederik Schowanek, Ping Sun, Joachim Venzmer

ABSTRACT

Surfactants are widely used across the globe both in industrial and consumer products. The n-octanol/water partition ratio or coefficient (log Kow) and n-octanol/water distribution coefficient (log D) are key parameters in environmental risk assessment of chemicals as they are often used to estimate the environmental fate and bioavailability and thus exposure and toxicity of a compound. Determining log Kow data for surfactants is a technical challenge due to their amphiphilic properties. Currently several existing experimental OECD methods (e.g. slow-stirring, HPLC, solubility ratio) and QSPR models are available for log Kow/D measurement or prediction. However, there are concerns that these methods have not been fully validated for surfactants and may not be applicable due to the specific phase behaviour of surfactants. The current methods were evaluated for the four surfactant classes (non-ionic, anionic, cationic and amphoteric). The solubility ratio approach, based on comparative n-octanol and water solubility measurements, did not generate robust or accurate data. The HPLC method generates consistently higher log Kow values than the slow-stirring method for non-ionics, but this positive bias could be removed using reference surfactants with log Kow values determined using the slow-stirring method. The slow-stirring method is the most widely applicable experimental method for generating log Kow/D data for all the surface-active test compounds. Generally, QSPR-predicted log Kow/D values do not correlate well with experimental values, apart for the group of non-ionic surfactants. Relatively, large differences in predicted log Kow/D values were observed when comparing various QSPR models, which were most noticeable for the ionised surfactants. The slow-stirring method is the most widely applicable experimental method for generating log Kow/D data for all the four surfactant classes. A weight of evidence approach is considered appropriate for non-ionic surfactants using experimental and model predications. However, it is more difficult to apply this approach to ionisable surfactants. Recommendations are made for the preferred existing QSPR predictive methods for determination of log Kow/D values for the surfactant classes. Investigation of newer alternative experimental log Kow methods as well as more biologically relevant and methodologically defensible alternative methods for describing partitioning of surfactants are recommended. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12302-018-0176-7

DOI

http://dx.doi.org/10.1186/s12302-018-0176-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111313697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Unilever (United Kingdom)", 
          "id": "https://www.grid.ac/institutes/grid.418707.d", 
          "name": [
            "Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, Bedford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodges", 
        "givenName": "Geoff", 
        "id": "sg:person.0703760237.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703760237.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CVE Consultancy Limited, CH48 7EB, West Kirby, Merseyside, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eadsforth", 
        "givenName": "Charles", 
        "id": "sg:person.011227333711.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011227333711.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Huntsman Europe, Everslaan 45, 3078, Everberg, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bossuyt", 
        "givenName": "Bart", 
        "id": "sg:person.01253103367.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253103367.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Chemical Industry Council", 
          "id": "https://www.grid.ac/institutes/grid.423600.3", 
          "name": [
            "CEFIC, Av E Van Nieuwenhuyse 4, 1160, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouvy", 
        "givenName": "Alain", 
        "id": "sg:person.010647005221.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647005221.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Solvay (France)", 
          "id": "https://www.grid.ac/institutes/grid.426005.5", 
          "name": [
            "Solvay, 20, rue Marcel Sembat, 69190, St Fons, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enrici", 
        "givenName": "Marie-Helene", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AkzoNobel (Netherlands)", 
          "id": "https://www.grid.ac/institutes/grid.423893.7", 
          "name": [
            "Akzo Nobel NV, Velperweg 76, 6824 BM, Arnhem, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geurts", 
        "givenName": "Marc", 
        "id": "sg:person.0654266002.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654266002.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Molecular Biology and Applied Ecology", 
          "id": "https://www.grid.ac/institutes/grid.418010.c", 
          "name": [
            "Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392, Schmallenberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotthoff", 
        "givenName": "Matthias", 
        "id": "sg:person.01112053232.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112053232.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Salford City Council", 
          "id": "https://www.grid.ac/institutes/grid.474214.0", 
          "name": [
            "Salford City Council, Swinton, M27 5AW, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michie", 
        "givenName": "Eleanor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clariant (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.433370.0", 
          "name": [
            "Clariant Produkte (Deutschland) GmbH, 65926, Frankfurt/M, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Dennis", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Molecular Biology and Applied Ecology", 
          "id": "https://www.grid.ac/institutes/grid.418010.c", 
          "name": [
            "Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392, Schmallenberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "Josef", 
        "id": "sg:person.0616641236.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616641236.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BASF (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.3319.8", 
          "name": [
            "BASF SE, 67056, Ludwigshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oetter", 
        "givenName": "Gunter", 
        "id": "sg:person.011651677601.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011651677601.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unilever (United Kingdom)", 
          "id": "https://www.grid.ac/institutes/grid.418707.d", 
          "name": [
            "Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, Bedford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roberts", 
        "givenName": "Jayne", 
        "id": "sg:person.01361251137.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361251137.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Procter & Gamble (Belgium)", 
          "id": "https://www.grid.ac/institutes/grid.425582.c", 
          "name": [
            "Procter & Gamble, Temselaan 100, 1853, Strombeek Bever, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schowanek", 
        "givenName": "Diederik", 
        "id": "sg:person.0765404666.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765404666.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Procter & Gamble (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418758.7", 
          "name": [
            "Procter & Gamble, 11530 Reed Hartman Hwy, SWIC, 45241, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Ping", 
        "id": "sg:person.01262503470.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262503470.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Evonik Nutrition and Care GmbH, Goldschmidtstr. 100, 45127, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venzmer", 
        "givenName": "Joachim", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.chroma.2005.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001355341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2016.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002605053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8686(69)85003-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004079099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1897/07-023r.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008604540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.2600840120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010286427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2010.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010430134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2009.01.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013681056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.21244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014067893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6em00118a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014269812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)96220-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017666528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.3397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024191958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.21494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025755191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0048-9697(91)90209-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029717019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0048-9697(91)90209-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029717019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10629369508050157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031153653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11743-000-0134-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032097463", 
          "https://doi.org/10.1007/s11743-000-0134-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b10985-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034380266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1062936x.2013.781538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036617996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2008.04.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qsar.200390015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040102634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2012.06.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042011906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10629369508029914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044892448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.3564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045330202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(03)00947-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049725841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(03)00947-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049725841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ps.2780430212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049989046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2004.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050298382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018808104653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051000764", 
          "https://doi.org/10.1023/a:1018808104653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/minf.201300172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051312687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.5620080607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051935871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.5620080607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051935871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0620260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0620260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac950778g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac950778g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.5b03708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055079202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.est.5b02901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055088006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.iecr.5b04955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055091305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci00053a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055400904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci00063a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci900289x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci900289x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01368a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055795548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm00211a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055938835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp509348a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056103397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3139/113.110050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071026448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3139/113.110173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071026570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3139/113.110303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071026695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.est.6b05662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083752626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucmedbio.2017.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084099771"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Surfactants are widely used across the globe both in industrial and consumer products. The n-octanol/water partition ratio or coefficient (log Kow) and n-octanol/water distribution coefficient (log D) are key parameters in environmental risk assessment of chemicals as they are often used to estimate the environmental fate and bioavailability and thus exposure and toxicity of a compound. Determining log Kow data for surfactants is a technical challenge due to their amphiphilic properties. Currently several existing experimental OECD methods (e.g. slow-stirring, HPLC, solubility ratio) and QSPR models are available for log Kow/D measurement or prediction. However, there are concerns that these methods have not been fully validated for surfactants and may not be applicable due to the specific phase behaviour of surfactants. The current methods were evaluated for the four surfactant classes (non-ionic, anionic, cationic and amphoteric). The solubility ratio approach, based on comparative n-octanol and water solubility measurements, did not generate robust or accurate data. The HPLC method generates consistently higher log Kow values than the slow-stirring method for non-ionics, but this positive bias could be removed using reference surfactants with log Kow values determined using the slow-stirring method. The slow-stirring method is the most widely applicable experimental method for generating log Kow/D data for all the surface-active test compounds. Generally, QSPR-predicted log Kow/D values do not correlate well with experimental values, apart for the group of non-ionic surfactants. Relatively, large differences in predicted log Kow/D values were observed when comparing various QSPR models, which were most noticeable for the ionised surfactants. The slow-stirring method is the most widely applicable experimental method for generating log Kow/D data for all the four surfactant classes. A weight of evidence approach is considered appropriate for non-ionic surfactants using experimental and model predications. However, it is more difficult to apply this approach to ionisable surfactants. Recommendations are made for the preferred existing QSPR predictive methods for determination of log Kow/D values for the surfactant classes. Investigation of newer alternative experimental log Kow methods as well as more biologically relevant and methodologically defensible alternative methods for describing partitioning of surfactants are recommended.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12302-018-0176-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297492", 
        "issn": [
          "2190-4707", 
          "2190-4715"
        ], 
        "name": "Environmental Sciences Europe", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "A comparison of log Kow (n-octanol\u2013water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e83f0e39d9b5e61c040296f8d40ec8133cf33bfff233148124e0f86889e470df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12302-018-0176-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111313697"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12302-018-0176-7", 
      "https://app.dimensions.ai/details/publication/pub.1111313697"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6336_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12302-018-0176-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12302-018-0176-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12302-018-0176-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12302-018-0176-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12302-018-0176-7'


 

This table displays all metadata directly associated to this object as RDF triples.

322 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12302-018-0176-7 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author N290ff8b537b44ad9aea90ebb73a3c3d6
4 schema:citation sg:pub.10.1007/s11743-000-0134-z
5 sg:pub.10.1023/a:1018808104653
6 https://doi.org/10.1002/etc.3397
7 https://doi.org/10.1002/etc.3564
8 https://doi.org/10.1002/etc.5620080607
9 https://doi.org/10.1002/jps.21244
10 https://doi.org/10.1002/jps.21494
11 https://doi.org/10.1002/jps.2600840120
12 https://doi.org/10.1002/minf.201300172
13 https://doi.org/10.1002/ps.2780430212
14 https://doi.org/10.1002/qsar.200390015
15 https://doi.org/10.1016/0001-8686(69)85003-7
16 https://doi.org/10.1016/0048-9697(91)90209-w
17 https://doi.org/10.1016/j.chemolab.2016.01.008
18 https://doi.org/10.1016/j.chemosphere.2008.04.074
19 https://doi.org/10.1016/j.chroma.2004.01.001
20 https://doi.org/10.1016/j.chroma.2005.01.023
21 https://doi.org/10.1016/j.chroma.2009.01.090
22 https://doi.org/10.1016/j.chroma.2012.06.080
23 https://doi.org/10.1016/j.ecoenv.2010.03.006
24 https://doi.org/10.1016/j.nucmedbio.2017.03.003
25 https://doi.org/10.1016/s0021-9673(01)96220-x
26 https://doi.org/10.1016/s0021-9673(03)00947-6
27 https://doi.org/10.1021/ac0620260
28 https://doi.org/10.1021/ac950778g
29 https://doi.org/10.1021/acs.analchem.5b03708
30 https://doi.org/10.1021/acs.est.5b02901
31 https://doi.org/10.1021/acs.est.6b05662
32 https://doi.org/10.1021/acs.iecr.5b04955
33 https://doi.org/10.1021/ci00053a005
34 https://doi.org/10.1021/ci00063a006
35 https://doi.org/10.1021/ci900289x
36 https://doi.org/10.1021/ja01368a004
37 https://doi.org/10.1021/jm00211a010
38 https://doi.org/10.1021/jp509348a
39 https://doi.org/10.1039/c6em00118a
40 https://doi.org/10.1080/10629369508029914
41 https://doi.org/10.1080/10629369508050157
42 https://doi.org/10.1080/1062936x.2013.781538
43 https://doi.org/10.1201/b10985-5
44 https://doi.org/10.1897/07-023r.1
45 https://doi.org/10.3139/113.110050
46 https://doi.org/10.3139/113.110173
47 https://doi.org/10.3139/113.110303
48 schema:datePublished 2019-12
49 schema:datePublishedReg 2019-12-01
50 schema:description Surfactants are widely used across the globe both in industrial and consumer products. The n-octanol/water partition ratio or coefficient (log Kow) and n-octanol/water distribution coefficient (log D) are key parameters in environmental risk assessment of chemicals as they are often used to estimate the environmental fate and bioavailability and thus exposure and toxicity of a compound. Determining log Kow data for surfactants is a technical challenge due to their amphiphilic properties. Currently several existing experimental OECD methods (e.g. slow-stirring, HPLC, solubility ratio) and QSPR models are available for log Kow/D measurement or prediction. However, there are concerns that these methods have not been fully validated for surfactants and may not be applicable due to the specific phase behaviour of surfactants. The current methods were evaluated for the four surfactant classes (non-ionic, anionic, cationic and amphoteric). The solubility ratio approach, based on comparative n-octanol and water solubility measurements, did not generate robust or accurate data. The HPLC method generates consistently higher log Kow values than the slow-stirring method for non-ionics, but this positive bias could be removed using reference surfactants with log Kow values determined using the slow-stirring method. The slow-stirring method is the most widely applicable experimental method for generating log Kow/D data for all the surface-active test compounds. Generally, QSPR-predicted log Kow/D values do not correlate well with experimental values, apart for the group of non-ionic surfactants. Relatively, large differences in predicted log Kow/D values were observed when comparing various QSPR models, which were most noticeable for the ionised surfactants. The slow-stirring method is the most widely applicable experimental method for generating log Kow/D data for all the four surfactant classes. A weight of evidence approach is considered appropriate for non-ionic surfactants using experimental and model predications. However, it is more difficult to apply this approach to ionisable surfactants. Recommendations are made for the preferred existing QSPR predictive methods for determination of log Kow/D values for the surfactant classes. Investigation of newer alternative experimental log Kow methods as well as more biologically relevant and methodologically defensible alternative methods for describing partitioning of surfactants are recommended.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N3f7ed9333116498dac6056b7d8edb70e
55 N84955a70b46146cb8e82e7b984e8bb5a
56 sg:journal.1297492
57 schema:name A comparison of log Kow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods
58 schema:pagination 1
59 schema:productId Nb7602becb0bf482c995674d04339dcf2
60 Ne844b9971e424169aa4e5a598f998a10
61 Nfa39a8829b8840ed8a987e2543332548
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111313697
63 https://doi.org/10.1186/s12302-018-0176-7
64 schema:sdDatePublished 2019-04-11T08:38
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N82443ec9a553453583c9ea81df5bc81b
67 schema:url https://link.springer.com/10.1186%2Fs12302-018-0176-7
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N03ebbd4cda26456f917f6ec7646db8cb schema:affiliation https://www.grid.ac/institutes/grid.433370.0
72 schema:familyName Miller
73 schema:givenName Dennis
74 rdf:type schema:Person
75 N1a6d3c2a32f543bfba0f989021e94b37 rdf:first sg:person.011227333711.74
76 rdf:rest N97a4074d4be34b2380bd322f562fd448
77 N1d649b53273f4fe9838657a91b1e6c79 rdf:first N03ebbd4cda26456f917f6ec7646db8cb
78 rdf:rest Nca7c84e4e1db4ef28e68951d65dbe090
79 N27aeeed12053464a8de598b60934633f schema:affiliation https://www.grid.ac/institutes/grid.474214.0
80 schema:familyName Michie
81 schema:givenName Eleanor
82 rdf:type schema:Person
83 N290ff8b537b44ad9aea90ebb73a3c3d6 rdf:first sg:person.0703760237.55
84 rdf:rest N1a6d3c2a32f543bfba0f989021e94b37
85 N3f7ed9333116498dac6056b7d8edb70e schema:volumeNumber 31
86 rdf:type schema:PublicationVolume
87 N48e38b5118d141e990b5d14d8094f462 schema:name CVE Consultancy Limited, CH48 7EB, West Kirby, Merseyside, UK
88 rdf:type schema:Organization
89 N53f13e90d73e4e56b039724c17b26bce schema:name Evonik Nutrition and Care GmbH, Goldschmidtstr. 100, 45127, Essen, Germany
90 rdf:type schema:Organization
91 N5fc08a29fc1b4582adf6862e0ceda13e rdf:first sg:person.010647005221.06
92 rdf:rest Na1dd90e4a58842e68622667b6c260f71
93 N6a2f8717f9044782825961cf39df2a8e rdf:first sg:person.01262503470.75
94 rdf:rest Nf555a4427b8d40b5a838093fa20481e3
95 N7a51d3aae8e947a7b830e543bb8897bf schema:affiliation N53f13e90d73e4e56b039724c17b26bce
96 schema:familyName Venzmer
97 schema:givenName Joachim
98 rdf:type schema:Person
99 N7ba6731c57c34a54b8ba3dfe918485bc rdf:first sg:person.01361251137.23
100 rdf:rest Nd65683136b64409aa5f5bfdcf6b2e446
101 N81b792108ad346eaae7ea5e088ec099c rdf:first N27aeeed12053464a8de598b60934633f
102 rdf:rest N1d649b53273f4fe9838657a91b1e6c79
103 N82443ec9a553453583c9ea81df5bc81b schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N84955a70b46146cb8e82e7b984e8bb5a schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 N97a4074d4be34b2380bd322f562fd448 rdf:first sg:person.01253103367.65
108 rdf:rest N5fc08a29fc1b4582adf6862e0ceda13e
109 Na1dd90e4a58842e68622667b6c260f71 rdf:first Ndb0ad57e6b4142fba4e78324784494a4
110 rdf:rest Nf1f0d0097cdc407b89715c49ea481c21
111 Nb6a575b566024adeb07d59f1af678fc4 rdf:first sg:person.011651677601.25
112 rdf:rest N7ba6731c57c34a54b8ba3dfe918485bc
113 Nb7602becb0bf482c995674d04339dcf2 schema:name doi
114 schema:value 10.1186/s12302-018-0176-7
115 rdf:type schema:PropertyValue
116 Nca7c84e4e1db4ef28e68951d65dbe090 rdf:first sg:person.0616641236.34
117 rdf:rest Nb6a575b566024adeb07d59f1af678fc4
118 Nd65683136b64409aa5f5bfdcf6b2e446 rdf:first sg:person.0765404666.00
119 rdf:rest N6a2f8717f9044782825961cf39df2a8e
120 Ndb0ad57e6b4142fba4e78324784494a4 schema:affiliation https://www.grid.ac/institutes/grid.426005.5
121 schema:familyName Enrici
122 schema:givenName Marie-Helene
123 rdf:type schema:Person
124 Ne844b9971e424169aa4e5a598f998a10 schema:name readcube_id
125 schema:value e83f0e39d9b5e61c040296f8d40ec8133cf33bfff233148124e0f86889e470df
126 rdf:type schema:PropertyValue
127 Nec491b0a1c8f4e54a3a96055cb8de390 schema:name Huntsman Europe, Everslaan 45, 3078, Everberg, Belgium
128 rdf:type schema:Organization
129 Nf1f0d0097cdc407b89715c49ea481c21 rdf:first sg:person.0654266002.31
130 rdf:rest Nf8096d59536440f59ee249fc7de0164f
131 Nf555a4427b8d40b5a838093fa20481e3 rdf:first N7a51d3aae8e947a7b830e543bb8897bf
132 rdf:rest rdf:nil
133 Nf8096d59536440f59ee249fc7de0164f rdf:first sg:person.01112053232.64
134 rdf:rest N81b792108ad346eaae7ea5e088ec099c
135 Nfa39a8829b8840ed8a987e2543332548 schema:name dimensions_id
136 schema:value pub.1111313697
137 rdf:type schema:PropertyValue
138 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
139 schema:name Environmental Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
142 schema:name Environmental Science and Management
143 rdf:type schema:DefinedTerm
144 sg:journal.1297492 schema:issn 2190-4707
145 2190-4715
146 schema:name Environmental Sciences Europe
147 rdf:type schema:Periodical
148 sg:person.010647005221.06 schema:affiliation https://www.grid.ac/institutes/grid.423600.3
149 schema:familyName Bouvy
150 schema:givenName Alain
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647005221.06
152 rdf:type schema:Person
153 sg:person.01112053232.64 schema:affiliation https://www.grid.ac/institutes/grid.418010.c
154 schema:familyName Kotthoff
155 schema:givenName Matthias
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112053232.64
157 rdf:type schema:Person
158 sg:person.011227333711.74 schema:affiliation N48e38b5118d141e990b5d14d8094f462
159 schema:familyName Eadsforth
160 schema:givenName Charles
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011227333711.74
162 rdf:type schema:Person
163 sg:person.011651677601.25 schema:affiliation https://www.grid.ac/institutes/grid.3319.8
164 schema:familyName Oetter
165 schema:givenName Gunter
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011651677601.25
167 rdf:type schema:Person
168 sg:person.01253103367.65 schema:affiliation Nec491b0a1c8f4e54a3a96055cb8de390
169 schema:familyName Bossuyt
170 schema:givenName Bart
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253103367.65
172 rdf:type schema:Person
173 sg:person.01262503470.75 schema:affiliation https://www.grid.ac/institutes/grid.418758.7
174 schema:familyName Sun
175 schema:givenName Ping
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262503470.75
177 rdf:type schema:Person
178 sg:person.01361251137.23 schema:affiliation https://www.grid.ac/institutes/grid.418707.d
179 schema:familyName Roberts
180 schema:givenName Jayne
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361251137.23
182 rdf:type schema:Person
183 sg:person.0616641236.34 schema:affiliation https://www.grid.ac/institutes/grid.418010.c
184 schema:familyName Müller
185 schema:givenName Josef
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616641236.34
187 rdf:type schema:Person
188 sg:person.0654266002.31 schema:affiliation https://www.grid.ac/institutes/grid.423893.7
189 schema:familyName Geurts
190 schema:givenName Marc
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654266002.31
192 rdf:type schema:Person
193 sg:person.0703760237.55 schema:affiliation https://www.grid.ac/institutes/grid.418707.d
194 schema:familyName Hodges
195 schema:givenName Geoff
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703760237.55
197 rdf:type schema:Person
198 sg:person.0765404666.00 schema:affiliation https://www.grid.ac/institutes/grid.425582.c
199 schema:familyName Schowanek
200 schema:givenName Diederik
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765404666.00
202 rdf:type schema:Person
203 sg:pub.10.1007/s11743-000-0134-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032097463
204 https://doi.org/10.1007/s11743-000-0134-z
205 rdf:type schema:CreativeWork
206 sg:pub.10.1023/a:1018808104653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051000764
207 https://doi.org/10.1023/a:1018808104653
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1002/etc.3397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024191958
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1002/etc.3564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045330202
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1002/etc.5620080607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051935871
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1002/jps.21244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014067893
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1002/jps.21494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025755191
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/jps.2600840120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010286427
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1002/minf.201300172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051312687
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1002/ps.2780430212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049989046
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1002/qsar.200390015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040102634
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/0001-8686(69)85003-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004079099
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/0048-9697(91)90209-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1029717019
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.chemolab.2016.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002605053
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.chemosphere.2008.04.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660140
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.chroma.2004.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050298382
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.chroma.2005.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001355341
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.chroma.2009.01.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013681056
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.chroma.2012.06.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042011906
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.ecoenv.2010.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010430134
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.nucmedbio.2017.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084099771
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/s0021-9673(01)96220-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017666528
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/s0021-9673(03)00947-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049725841
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1021/ac0620260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054998826
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1021/ac950778g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055072300
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1021/acs.analchem.5b03708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055079202
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1021/acs.est.5b02901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055088006
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1021/acs.est.6b05662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083752626
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1021/acs.iecr.5b04955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055091305
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1021/ci00053a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055400904
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1021/ci00063a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401023
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1021/ci900289x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055404811
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1021/ja01368a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055795548
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1021/jm00211a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055938835
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1021/jp509348a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056103397
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1039/c6em00118a schema:sameAs https://app.dimensions.ai/details/publication/pub.1014269812
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1080/10629369508029914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044892448
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1080/10629369508050157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031153653
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1080/1062936x.2013.781538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036617996
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1201/b10985-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034380266
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1897/07-023r.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008604540
286 rdf:type schema:CreativeWork
287 https://doi.org/10.3139/113.110050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071026448
288 rdf:type schema:CreativeWork
289 https://doi.org/10.3139/113.110173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071026570
290 rdf:type schema:CreativeWork
291 https://doi.org/10.3139/113.110303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071026695
292 rdf:type schema:CreativeWork
293 https://www.grid.ac/institutes/grid.3319.8 schema:alternateName BASF (Germany)
294 schema:name BASF SE, 67056, Ludwigshafen, Germany
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.418010.c schema:alternateName Fraunhofer Institute for Molecular Biology and Applied Ecology
297 schema:name Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392, Schmallenberg, Germany
298 rdf:type schema:Organization
299 https://www.grid.ac/institutes/grid.418707.d schema:alternateName Unilever (United Kingdom)
300 schema:name Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, Bedford, UK
301 rdf:type schema:Organization
302 https://www.grid.ac/institutes/grid.418758.7 schema:alternateName Procter & Gamble (United States)
303 schema:name Procter & Gamble, 11530 Reed Hartman Hwy, SWIC, 45241, Cincinnati, OH, USA
304 rdf:type schema:Organization
305 https://www.grid.ac/institutes/grid.423600.3 schema:alternateName European Chemical Industry Council
306 schema:name CEFIC, Av E Van Nieuwenhuyse 4, 1160, Brussels, Belgium
307 rdf:type schema:Organization
308 https://www.grid.ac/institutes/grid.423893.7 schema:alternateName AkzoNobel (Netherlands)
309 schema:name Akzo Nobel NV, Velperweg 76, 6824 BM, Arnhem, The Netherlands
310 rdf:type schema:Organization
311 https://www.grid.ac/institutes/grid.425582.c schema:alternateName Procter & Gamble (Belgium)
312 schema:name Procter & Gamble, Temselaan 100, 1853, Strombeek Bever, Belgium
313 rdf:type schema:Organization
314 https://www.grid.ac/institutes/grid.426005.5 schema:alternateName Solvay (France)
315 schema:name Solvay, 20, rue Marcel Sembat, 69190, St Fons, France
316 rdf:type schema:Organization
317 https://www.grid.ac/institutes/grid.433370.0 schema:alternateName Clariant (Germany)
318 schema:name Clariant Produkte (Deutschland) GmbH, 65926, Frankfurt/M, Germany
319 rdf:type schema:Organization
320 https://www.grid.ac/institutes/grid.474214.0 schema:alternateName Salford City Council
321 schema:name Salford City Council, Swinton, M27 5AW, Manchester, UK
322 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...