Ontology type: schema:ScholarlyArticle
2019-12
AUTHORSPrathibha M. Dharmappa, Pushpa Doddaraju, Mohankumar V. Malagondanahalli, Raju B. Rangappa, N. M. Mallikarjuna, Sowmya H. Rajendrareddy, Ramachandra Ramanjinappa, Rajanna P. Mavinahalli, Trichy Ganesh Prasad, Makarla Udayakumar, Sreeman M. Sheshshayee
ABSTRACTBACKGROUND: Semi-irrigated aerobic cultivation of rice has been suggested as a potential water saving agronomy. However, suitable cultivars are needed in order to sustain yield levels. An introgression of water mining and water use efficiency (WUE) traits is the most appropriate strategy for a comprehensive genetic enhancement to develop such rice cultivars. RESULTS: We report a novel strategy of phenotyping and marker-assisted backcross breeding to introgress water mining (root) and water use efficiency (WUE) traits into a popular high yielding cultivar, IR-64. Trait donor genotypes for root (AC-39020) and WUE (IET-16348) were crossed separately and the resultant F1s were inter-mated to generate double cross F1s (DCF1). Progenies of three generations of backcross followed by selfing were charatcerised for target phenotype and genome integration. A set of 260 trait introgressed lines were identified. Root weight and root length of TILs were 53% and 23.5% higher, while Δ13C was 2.85‰ lower indicating a significant increase in WUE over IR-64. Five best TILs selected from BC3F3 generation showed 52% and 63% increase in yield over IR-64 under 100% and 60% FC, respectively. The trait introgressed lines resembled IR64 with more than 97% of genome recovered with a significant yield advantage under semi-irrigated aerobic conditions The study validated markers identified earlier by association mapping. CONCLUSION: Introgression of root and WUE into IR64, resulted in an excellent yield advantage even when cultivated under semi-irrigated aerobic condition. The study provided a proof-of-concept that maintaining leaf turgor and carbon metabolism results in improved adaptation to water limited conditions and sustains productivity. A marker based multi-parent backcross breeding is an appropriate approach for trait introgression. The trait introgressed lines developed can be effectively used in future crop improvement programs as donor lines for both root and WUE. More... »
PAGES14
http://scigraph.springernature.com/pub.10.1186/s12284-019-0268-z
DOIhttp://dx.doi.org/10.1186/s12284-019-0268-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112607022
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30847616
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Crop and Pasture Production",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Agricultural and Veterinary Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Agricultural Sciences, Bangalore",
"id": "https://www.grid.ac/institutes/grid.413008.e",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India"
],
"type": "Organization"
},
"familyName": "Dharmappa",
"givenName": "Prathibha M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Agricultural Sciences, Bangalore",
"id": "https://www.grid.ac/institutes/grid.413008.e",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India"
],
"type": "Organization"
},
"familyName": "Doddaraju",
"givenName": "Pushpa",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Agricultural Sciences, Bangalore",
"id": "https://www.grid.ac/institutes/grid.413008.e",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India"
],
"type": "Organization"
},
"familyName": "Malagondanahalli",
"givenName": "Mohankumar V.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Kansas State University",
"id": "https://www.grid.ac/institutes/grid.36567.31",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India",
"Present address- Department of Agronomy Kansas State University, Kansas, USA"
],
"type": "Organization"
},
"familyName": "Rangappa",
"givenName": "Raju B.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Agricultural Sciences, Bangalore",
"id": "https://www.grid.ac/institutes/grid.413008.e",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India"
],
"type": "Organization"
},
"familyName": "Mallikarjuna",
"givenName": "N. M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Agricultural Sciences, Bangalore",
"id": "https://www.grid.ac/institutes/grid.413008.e",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India"
],
"type": "Organization"
},
"familyName": "Rajendrareddy",
"givenName": "Sowmya H.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "REVA University",
"id": "https://www.grid.ac/institutes/grid.464661.7",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India",
"Present address: Assistant Professor, Department of Biotechnology, Reva University, Bengaluru, India"
],
"type": "Organization"
},
"familyName": "Ramanjinappa",
"givenName": "Ramachandra",
"type": "Person"
},
{
"affiliation": {
"name": [
"Rice Breeder, Zonal Agricultural Research Station, VC Farm, 571405, Mandya, India"
],
"type": "Organization"
},
"familyName": "Mavinahalli",
"givenName": "Rajanna P.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Agricultural Sciences, Bangalore",
"id": "https://www.grid.ac/institutes/grid.413008.e",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India"
],
"type": "Organization"
},
"familyName": "Prasad",
"givenName": "Trichy Ganesh",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Agricultural Sciences, Bangalore",
"id": "https://www.grid.ac/institutes/grid.413008.e",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India"
],
"type": "Organization"
},
"familyName": "Udayakumar",
"givenName": "Makarla",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Agricultural Sciences, Bangalore",
"id": "https://www.grid.ac/institutes/grid.413008.e",
"name": [
"Department of Crop Physiology, University of Agricultural Sciences, GKVK, 560065, Bengaluru, India"
],
"type": "Organization"
},
"familyName": "Sheshshayee",
"givenName": "Sreeman M.",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1071/pp9880799",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002818917"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0065-2113(04)92004-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005336064"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1747-0765.2010.00482.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005900156"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1747-0765.2010.00482.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005900156"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fcr.2005.07.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006475747"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1744-7348.2005.00033.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006733701"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1744-7348.2005.00033.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006733701"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1071/fp13149",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007725208"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fcr.2010.10.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007772478"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12284-015-0044-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009599377",
"https://doi.org/10.1186/s12284-015-0044-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12284-015-0044-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009599377",
"https://doi.org/10.1186/s12284-015-0044-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fcr.2005.08.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010493695"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/pce.12327",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011043507"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1626/pps.14.1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011116766"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2014/863683",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013327518"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1051/agro:2008021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013725016",
"https://doi.org/10.1051/agro:2008021"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s001220050542",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014832891",
"https://doi.org/10.1007/s001220050542"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s001220050542",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014832891",
"https://doi.org/10.1007/s001220050542"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/07352680802467736",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017476060"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jxb/err269",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020757961"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.tplants.2013.09.008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022724478"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.pbi.2008.02.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023261719"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-7491-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024360651",
"https://doi.org/10.1007/978-1-4419-7491-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-7491-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024360651",
"https://doi.org/10.1007/978-1-4419-7491-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev.pp.40.060189.002443",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024932147"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fcr.2014.03.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025795919"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1461-0248.2012.01751.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026613494"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.agwat.2005.07.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027644679"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jxb/erq438",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029705232"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fcr.2011.03.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030984167"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fcr.2009.02.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031425601"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fcr.2012.10.021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032301538"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-85546-0_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032408790",
"https://doi.org/10.1007/978-3-540-85546-0_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-85546-0_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032408790",
"https://doi.org/10.1007/978-3-540-85546-0_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12284-015-0049-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032454168",
"https://doi.org/10.1186/s12284-015-0049-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12284-015-0049-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032454168",
"https://doi.org/10.1186/s12284-015-0049-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0378-3774(00)00128-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032566017"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00122-011-1688-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033810127",
"https://doi.org/10.1007/s00122-011-1688-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.agwat.2004.11.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034280554"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1071/pp9860191",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034726448"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jxb/erq429",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034977417"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jxb/erq429",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034977417"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3389/fphys.2012.00347",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035953949"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2229-13-194",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037229530",
"https://doi.org/10.1186/1471-2229-13-194"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jxb/eru363",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037333596"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.81.24.8014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037339771"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0378-4290(94)00100-q",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037449118"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.pbi.2016.04.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037898208"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jxb/erv077",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038437703"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng.2725",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039101550",
"https://doi.org/10.1038/ng.2725"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1071/ar05069",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039734043"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0933-3630(93)90002-v",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040787181"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0933-3630(93)90002-v",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040787181"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jxb/err105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041699719"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jxb/erh277",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043038002"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3389/fpls.2014.00086",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043259537"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00122-012-1963-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046355236",
"https://doi.org/10.1007/s00122-012-1963-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fcr.2008.06.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046644615"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10681-005-1681-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047936208",
"https://doi.org/10.1007/s10681-005-1681-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1104/pp.112.208298",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050137085"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13593-011-0055-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051864574",
"https://doi.org/10.1007/s13593-011-0055-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3923/ajar.2014.105.113",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052210646"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.gfs.2016.02.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052842004"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.gfs.2016.02.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052842004"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00122-005-0110-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053267392",
"https://doi.org/10.1007/s00122-005-0110-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00122-005-0110-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053267392",
"https://doi.org/10.1007/s00122-005-0110-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.agwat.2011.04.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053429408"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2135/cropsci2005.0119",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069029292"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2135/cropsci2002.1110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090703495"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12284-018-0208-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103149216",
"https://doi.org/10.1186/s12284-018-0208-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12284-018-0208-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103149216",
"https://doi.org/10.1186/s12284-018-0208-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3389/fchem.2018.00092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103196146"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-12",
"datePublishedReg": "2019-12-01",
"description": "BACKGROUND: Semi-irrigated aerobic cultivation of rice has been suggested as a potential water saving agronomy. However, suitable cultivars are needed in order to sustain yield levels. An introgression of water mining and water use efficiency (WUE) traits is the most appropriate strategy for a comprehensive genetic enhancement to develop such rice cultivars.\nRESULTS: We report a novel strategy of phenotyping and marker-assisted backcross breeding to introgress water mining (root) and water use efficiency (WUE) traits into a popular high yielding cultivar, IR-64. Trait donor genotypes for root (AC-39020) and WUE (IET-16348) were crossed separately and the resultant F1s were inter-mated to generate double cross F1s (DCF1). Progenies of three generations of backcross followed by selfing were charatcerised for target phenotype and genome integration. A set of 260 trait introgressed lines were identified. Root weight and root length of TILs were 53% and 23.5% higher, while \u039413C was 2.85\u2030 lower indicating a significant increase in WUE over IR-64. Five best TILs selected from BC3F3 generation showed 52% and 63% increase in yield over IR-64 under 100% and 60% FC, respectively. The trait introgressed lines resembled IR64 with more than 97% of genome recovered with a significant yield advantage under semi-irrigated aerobic conditions The study validated markers identified earlier by association mapping.\nCONCLUSION: Introgression of root and WUE into IR64, resulted in an excellent yield advantage even when cultivated under semi-irrigated aerobic condition. The study provided a proof-of-concept that maintaining leaf turgor and carbon metabolism results in improved adaptation to water limited conditions and sustains productivity. A marker based multi-parent backcross breeding is an appropriate approach for trait introgression. The trait introgressed lines developed can be effectively used in future crop improvement programs as donor lines for both root and WUE.",
"genre": "research_article",
"id": "sg:pub.10.1186/s12284-019-0268-z",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041344",
"issn": [
"1939-8425",
"1939-8433"
],
"name": "Rice",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"name": "Introgression of Root and Water Use Efficiency Traits Enhances Water Productivity: An Evidence for Physiological Breeding in Rice (Oryza sativa L.)",
"pagination": "14",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"3f050fe6f0d362d934f509bca6162f8cd8273e74555e077ce7ac6c418deaeb16"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30847616"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101503136"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s12284-019-0268-z"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112607022"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s12284-019-0268-z",
"https://app.dimensions.ai/details/publication/pub.1112607022"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000006.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1186%2Fs12284-019-0268-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12284-019-0268-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12284-019-0268-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12284-019-0268-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12284-019-0268-z'
This table displays all metadata directly associated to this object as RDF triples.
332 TRIPLES
21 PREDICATES
89 URIs
21 LITERALS
9 BLANK NODES