Reference genes for accurate gene expression analyses across different tissues, developmental stages and genotypes in rice for drought tolerance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07-18

AUTHORS

Isaiah M. Pabuayon, Naoki Yamamoto, Jennylyn L. Trinidad, Toshisangba Longkumer, Manish L. Raorane, Ajay Kohli

ABSTRACT

BackgroundQuantitative reverse transcription PCR (qRT-PCR) has been routinely used to quantify gene expression level. This technique determines the expression of a target gene by comparison to an internal control gene uniformly expressed among the samples analyzed. The reproducibility and reliability of the results depend heavily on the reference genes used. To achieve successful gene expression analyses for drought tolerance studies in rice, reference gene selection should be based on consistency in expression across variables. We aimed to provide reference genes that would be consistent across different tissues, developmental stages and genotypes of rice and hence improve the quality of data in qRT-PCR analysis.FindingsTen candidate reference genes were screened from four ubiquitously expressed gene families by analyzing public microarray data sets that included profiles of multiple organs, developmental stages, and water availability status in rice. These genes were evaluated through qRT-PCR experiments with a rigorous statistical analysis to determine the best reference genes. A ubiquitin isogene showed the best gene expression stability as a single reference gene, while a 3-gene combination of another ubiquitin and two cyclophilin isogenes was the best reference gene combination. Comparison between the qRT-PCR and in-house microarray data on roots demonstrated reliability of the identified reference genes to monitor the differential expression of drought-related candidate genes.ConclusionsSpecific isogenes from among the regularly used gene families were identified for use in qRT-PCR-based analyses for gene expression in studies on drought tolerance in rice. These were stable across variables of treatment, genotype, tissue and growth stage. A single gene and/or a three gene set analysis is recommended, based on the resources available. More... »

PAGES

32

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12284-016-0104-7

DOI

http://dx.doi.org/10.1186/s12284-016-0104-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050350352

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27432349


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines", 
          "id": "http://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pabuayon", 
        "givenName": "Isaiah M.", 
        "id": "sg:person.013226442532.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013226442532.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines", 
          "id": "http://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Naoki", 
        "id": "sg:person.012075371671.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012075371671.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines", 
          "id": "http://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trinidad", 
        "givenName": "Jennylyn L.", 
        "id": "sg:person.07402170471.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07402170471.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines", 
          "id": "http://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Longkumer", 
        "givenName": "Toshisangba", 
        "id": "sg:person.01275722130.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275722130.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines", 
          "id": "http://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raorane", 
        "givenName": "Manish L.", 
        "id": "sg:person.0667454021.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667454021.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines", 
          "id": "http://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohli", 
        "givenName": "Ajay", 
        "id": "sg:person.01276631521.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276631521.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00438-011-0659-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050357258", 
          "https://doi.org/10.1007/s00438-011-0659-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1939-8433-6-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045212857", 
          "https://doi.org/10.1186/1939-8433-6-38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-3289-4_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003875371", 
          "https://doi.org/10.1007/978-1-4939-3289-4_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039751959", 
          "https://doi.org/10.1186/gb-2002-3-7-research0034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep15183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007888834", 
          "https://doi.org/10.1038/srep15183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-11-174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000330558", 
          "https://doi.org/10.1186/1471-2229-11-174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2199-7-33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040146760", 
          "https://doi.org/10.1186/1471-2199-7-33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026298032009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003902907", 
          "https://doi.org/10.1023/a:1026298032009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00299-007-0474-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012890795", 
          "https://doi.org/10.1007/s00299-007-0474-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13353-013-0173-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049413029", 
          "https://doi.org/10.1007/s13353-013-0173-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-10-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003353293", 
          "https://doi.org/10.1186/1471-2229-10-56"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07-18", 
    "datePublishedReg": "2016-07-18", 
    "description": "BackgroundQuantitative reverse transcription PCR (qRT-PCR) has been routinely used to quantify gene expression level. This technique determines the expression of a target gene by comparison to an internal control gene uniformly expressed among the samples analyzed. The reproducibility and reliability of the results depend heavily on the reference genes used. To achieve successful gene expression analyses for drought tolerance studies in rice, reference gene selection should be based on consistency in expression across variables. We aimed to provide reference genes that would be consistent across different tissues, developmental stages and genotypes of rice and hence improve the quality of data in qRT-PCR analysis.FindingsTen candidate reference genes were screened from four ubiquitously expressed gene families by analyzing public microarray data sets that included profiles of multiple organs, developmental stages, and water availability status in rice. These genes were evaluated through qRT-PCR experiments with a rigorous statistical analysis to determine the best reference genes. A ubiquitin isogene showed the best gene expression stability as a single reference gene, while a 3-gene combination of another ubiquitin and two cyclophilin isogenes was the best reference gene combination. Comparison between the qRT-PCR and in-house microarray data on roots demonstrated reliability of the identified reference genes to monitor the differential expression of drought-related candidate genes.ConclusionsSpecific isogenes from among the regularly used gene families were identified for use in qRT-PCR-based analyses for gene expression in studies on drought tolerance in rice. These were stable across variables of treatment, genotype, tissue and growth stage. A single gene and/or a three gene set analysis is recommended, based on the resources available.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12284-016-0104-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1041344", 
        "issn": [
          "1939-8425", 
          "1939-8433"
        ], 
        "name": "Rice", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "gene expression analysis", 
      "reference genes", 
      "drought tolerance", 
      "gene family", 
      "developmental stages", 
      "expression analysis", 
      "different tissues", 
      "best reference gene combination", 
      "accurate gene expression analysis", 
      "drought tolerance studies", 
      "qRT-PCR", 
      "qRT-PCR experiments", 
      "house microarray data", 
      "reference gene selection", 
      "gene expression stability", 
      "candidate reference genes", 
      "best reference genes", 
      "qRT-PCR analysis", 
      "reference gene combination", 
      "gene expression levels", 
      "genotypes of rice", 
      "internal control genes", 
      "single reference gene", 
      "single gene", 
      "target genes", 
      "candidate genes", 
      "expression stability", 
      "control genes", 
      "microarray data sets", 
      "gene expression", 
      "reverse transcription-PCR", 
      "gene combinations", 
      "isogenes", 
      "differential expression", 
      "genes", 
      "microarray data", 
      "public microarray data sets", 
      "gene selection", 
      "expression levels", 
      "rice", 
      "transcription-PCR", 
      "growth stages", 
      "expression", 
      "successful gene expression analysis", 
      "genotypes", 
      "ubiquitin", 
      "family", 
      "tolerance", 
      "tissue", 
      "multiple organs", 
      "PCR", 
      "tolerance studies", 
      "stage", 
      "roots", 
      "variables of treatment", 
      "rigorous statistical analysis", 
      "organs", 
      "analysis", 
      "selection", 
      "availability status", 
      "data sets", 
      "combination", 
      "levels", 
      "study", 
      "profile", 
      "data", 
      "comparison", 
      "experiments", 
      "resources", 
      "status", 
      "results", 
      "set", 
      "statistical analysis", 
      "stability", 
      "treatment", 
      "samples", 
      "variables", 
      "use", 
      "quality of data", 
      "reliability", 
      "quality", 
      "reproducibility", 
      "technique", 
      "consistency"
    ], 
    "name": "Reference genes for accurate gene expression analyses across different tissues, developmental stages and genotypes in rice for drought tolerance", 
    "pagination": "32", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050350352"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12284-016-0104-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27432349"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12284-016-0104-7", 
      "https://app.dimensions.ai/details/publication/pub.1050350352"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_693.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12284-016-0104-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12284-016-0104-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12284-016-0104-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12284-016-0104-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12284-016-0104-7'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      120 URIs      101 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12284-016-0104-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ned90984a96ae4583bcff9483afed6137
4 schema:citation sg:pub.10.1007/978-1-4939-3289-4_15
5 sg:pub.10.1007/s00299-007-0474-9
6 sg:pub.10.1007/s00438-011-0659-3
7 sg:pub.10.1007/s13353-013-0173-x
8 sg:pub.10.1023/a:1026298032009
9 sg:pub.10.1038/srep15183
10 sg:pub.10.1186/1471-2199-7-33
11 sg:pub.10.1186/1471-2229-10-56
12 sg:pub.10.1186/1471-2229-11-174
13 sg:pub.10.1186/1939-8433-6-38
14 sg:pub.10.1186/gb-2002-3-7-research0034
15 schema:datePublished 2016-07-18
16 schema:datePublishedReg 2016-07-18
17 schema:description BackgroundQuantitative reverse transcription PCR (qRT-PCR) has been routinely used to quantify gene expression level. This technique determines the expression of a target gene by comparison to an internal control gene uniformly expressed among the samples analyzed. The reproducibility and reliability of the results depend heavily on the reference genes used. To achieve successful gene expression analyses for drought tolerance studies in rice, reference gene selection should be based on consistency in expression across variables. We aimed to provide reference genes that would be consistent across different tissues, developmental stages and genotypes of rice and hence improve the quality of data in qRT-PCR analysis.FindingsTen candidate reference genes were screened from four ubiquitously expressed gene families by analyzing public microarray data sets that included profiles of multiple organs, developmental stages, and water availability status in rice. These genes were evaluated through qRT-PCR experiments with a rigorous statistical analysis to determine the best reference genes. A ubiquitin isogene showed the best gene expression stability as a single reference gene, while a 3-gene combination of another ubiquitin and two cyclophilin isogenes was the best reference gene combination. Comparison between the qRT-PCR and in-house microarray data on roots demonstrated reliability of the identified reference genes to monitor the differential expression of drought-related candidate genes.ConclusionsSpecific isogenes from among the regularly used gene families were identified for use in qRT-PCR-based analyses for gene expression in studies on drought tolerance in rice. These were stable across variables of treatment, genotype, tissue and growth stage. A single gene and/or a three gene set analysis is recommended, based on the resources available.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N0ef3d41bfbab4059a83baa90a38919e2
21 Nab847c093c0f438d90bad590d284b6b2
22 sg:journal.1041344
23 schema:keywords PCR
24 accurate gene expression analysis
25 analysis
26 availability status
27 best reference gene combination
28 best reference genes
29 candidate genes
30 candidate reference genes
31 combination
32 comparison
33 consistency
34 control genes
35 data
36 data sets
37 developmental stages
38 different tissues
39 differential expression
40 drought tolerance
41 drought tolerance studies
42 experiments
43 expression
44 expression analysis
45 expression levels
46 expression stability
47 family
48 gene combinations
49 gene expression
50 gene expression analysis
51 gene expression levels
52 gene expression stability
53 gene family
54 gene selection
55 genes
56 genotypes
57 genotypes of rice
58 growth stages
59 house microarray data
60 internal control genes
61 isogenes
62 levels
63 microarray data
64 microarray data sets
65 multiple organs
66 organs
67 profile
68 public microarray data sets
69 qRT-PCR
70 qRT-PCR analysis
71 qRT-PCR experiments
72 quality
73 quality of data
74 reference gene combination
75 reference gene selection
76 reference genes
77 reliability
78 reproducibility
79 resources
80 results
81 reverse transcription-PCR
82 rice
83 rigorous statistical analysis
84 roots
85 samples
86 selection
87 set
88 single gene
89 single reference gene
90 stability
91 stage
92 statistical analysis
93 status
94 study
95 successful gene expression analysis
96 target genes
97 technique
98 tissue
99 tolerance
100 tolerance studies
101 transcription-PCR
102 treatment
103 ubiquitin
104 use
105 variables
106 variables of treatment
107 schema:name Reference genes for accurate gene expression analyses across different tissues, developmental stages and genotypes in rice for drought tolerance
108 schema:pagination 32
109 schema:productId N2331c22ca96c47509f1aea85dac49c97
110 N80c63b4437264e1ea6510415538b6c14
111 Nf9d2689a198e4cd49f65271f8321252d
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050350352
113 https://doi.org/10.1186/s12284-016-0104-7
114 schema:sdDatePublished 2022-12-01T06:34
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher Nf2d29f1cd50047ccb2ce5322b3526504
117 schema:url https://doi.org/10.1186/s12284-016-0104-7
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N0ef3d41bfbab4059a83baa90a38919e2 schema:issueNumber 1
122 rdf:type schema:PublicationIssue
123 N1c50208ba7c9493cb8f4a297f864964c rdf:first sg:person.01276631521.54
124 rdf:rest rdf:nil
125 N2331c22ca96c47509f1aea85dac49c97 schema:name doi
126 schema:value 10.1186/s12284-016-0104-7
127 rdf:type schema:PropertyValue
128 N6032def504df4d1c81d700cf78f2707a rdf:first sg:person.01275722130.26
129 rdf:rest Nb12ffb319ad2430c87ea54c867324c77
130 N80c63b4437264e1ea6510415538b6c14 schema:name dimensions_id
131 schema:value pub.1050350352
132 rdf:type schema:PropertyValue
133 Nab847c093c0f438d90bad590d284b6b2 schema:volumeNumber 9
134 rdf:type schema:PublicationVolume
135 Nb12ffb319ad2430c87ea54c867324c77 rdf:first sg:person.0667454021.50
136 rdf:rest N1c50208ba7c9493cb8f4a297f864964c
137 Nbd4028acec7b42589cc1ed4bdc84717e rdf:first sg:person.07402170471.66
138 rdf:rest N6032def504df4d1c81d700cf78f2707a
139 Ned90984a96ae4583bcff9483afed6137 rdf:first sg:person.013226442532.31
140 rdf:rest Nf53af080ac7f42c1b3517a319eb5861b
141 Nf2d29f1cd50047ccb2ce5322b3526504 schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 Nf53af080ac7f42c1b3517a319eb5861b rdf:first sg:person.012075371671.12
144 rdf:rest Nbd4028acec7b42589cc1ed4bdc84717e
145 Nf9d2689a198e4cd49f65271f8321252d schema:name pubmed_id
146 schema:value 27432349
147 rdf:type schema:PropertyValue
148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
149 schema:name Biological Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
152 schema:name Genetics
153 rdf:type schema:DefinedTerm
154 sg:journal.1041344 schema:issn 1939-8425
155 1939-8433
156 schema:name Rice
157 schema:publisher Springer Nature
158 rdf:type schema:Periodical
159 sg:person.012075371671.12 schema:affiliation grid-institutes:grid.419387.0
160 schema:familyName Yamamoto
161 schema:givenName Naoki
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012075371671.12
163 rdf:type schema:Person
164 sg:person.01275722130.26 schema:affiliation grid-institutes:grid.419387.0
165 schema:familyName Longkumer
166 schema:givenName Toshisangba
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275722130.26
168 rdf:type schema:Person
169 sg:person.01276631521.54 schema:affiliation grid-institutes:grid.419387.0
170 schema:familyName Kohli
171 schema:givenName Ajay
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276631521.54
173 rdf:type schema:Person
174 sg:person.013226442532.31 schema:affiliation grid-institutes:grid.419387.0
175 schema:familyName Pabuayon
176 schema:givenName Isaiah M.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013226442532.31
178 rdf:type schema:Person
179 sg:person.0667454021.50 schema:affiliation grid-institutes:grid.419387.0
180 schema:familyName Raorane
181 schema:givenName Manish L.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667454021.50
183 rdf:type schema:Person
184 sg:person.07402170471.66 schema:affiliation grid-institutes:grid.419387.0
185 schema:familyName Trinidad
186 schema:givenName Jennylyn L.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07402170471.66
188 rdf:type schema:Person
189 sg:pub.10.1007/978-1-4939-3289-4_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003875371
190 https://doi.org/10.1007/978-1-4939-3289-4_15
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s00299-007-0474-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012890795
193 https://doi.org/10.1007/s00299-007-0474-9
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00438-011-0659-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050357258
196 https://doi.org/10.1007/s00438-011-0659-3
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s13353-013-0173-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049413029
199 https://doi.org/10.1007/s13353-013-0173-x
200 rdf:type schema:CreativeWork
201 sg:pub.10.1023/a:1026298032009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003902907
202 https://doi.org/10.1023/a:1026298032009
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/srep15183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007888834
205 https://doi.org/10.1038/srep15183
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/1471-2199-7-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040146760
208 https://doi.org/10.1186/1471-2199-7-33
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/1471-2229-10-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003353293
211 https://doi.org/10.1186/1471-2229-10-56
212 rdf:type schema:CreativeWork
213 sg:pub.10.1186/1471-2229-11-174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000330558
214 https://doi.org/10.1186/1471-2229-11-174
215 rdf:type schema:CreativeWork
216 sg:pub.10.1186/1939-8433-6-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045212857
217 https://doi.org/10.1186/1939-8433-6-38
218 rdf:type schema:CreativeWork
219 sg:pub.10.1186/gb-2002-3-7-research0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
220 https://doi.org/10.1186/gb-2002-3-7-research0034
221 rdf:type schema:CreativeWork
222 grid-institutes:grid.419387.0 schema:alternateName Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines
223 schema:name Genetics & Biotechnology Division, International Rice Research Institute, DAPO 7777, 1301, Metro Manila, Philippines
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...