The role of absolute humidity in respiratory mortality in Guangzhou, a hot and wet city of South China View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-17

AUTHORS

Shutian Chen, Chao Liu, Guozhen Lin, Otto Hänninen, Hang Dong, Kairong Xiong

ABSTRACT

BACKGROUND: For the reason that many studies have been inconclusive on the effect of humidity on respiratory disease, we examined the association between absolute humidity and respiratory disease mortality and quantified the mortality burden due to non-optimal absolute humidity in Guangzhou, China. METHODS: Daily respiratory disease mortality including total 42,440 deaths from 1 February 2013 to 31 December 2018 and meteorological data of the same period in Guangzhou City were collected. The distributed lag non-linear model was used to determine the optimal absolute humidity of death and discuss their non-linear lagged effects. Attributable fraction and population attributable mortality were calculated based on the optimal absolute humidity, defined as the minimum mortality absolute humidity. RESULTS: The association between absolute humidity and total respiratory disease mortality showed an M-shaped non-linear curve. In total, 21.57% (95% CI 14.20 ~ 27.75%) of respiratory disease mortality (9154 deaths) was attributable to non-optimum absolute humidity. The attributable fractions due to high absolute humidity were 13.49% (95% CI 9.56 ~ 16.98%), while mortality burden of low absolute humidity were 8.08% (95% CI 0.89 ~ 13.93%), respectively. Extreme dry and moist absolute humidity accounted for total respiratory disease mortality fraction of 0.87% (95% CI - 0.09 ~ 1.58%) and 0.91% (95% CI 0.25 ~ 1.39%), respectively. There was no significant gender and age difference in the burden of attributable risk due to absolute humidity. CONCLUSIONS: Our study showed that both high and low absolute humidity are responsible for considerable respiratory disease mortality burden, the component attributed to the high absolute humidity effect is greater. Our results may have important implications for the development of public health measures to reduce respiratory disease mortality. More... »

PAGES

109

References to SciGraph publications

  • 2014-04-23. Attributable risk from distributed lag models in BMC MEDICAL RESEARCH METHODOLOGY
  • 2018-03-24. Climate Change and the Impact on Respiratory and Allergic Disease: 2018 in CURRENT ALLERGY AND ASTHMA REPORTS
  • 2018-12-01. Effects of extreme temperatures on hospital emergency room visits for respiratory diseases in Beijing, China in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2018-09-20. Impact of Climate Change on Pollen and Respiratory Disease in CURRENT ALLERGY AND ASTHMA REPORTS
  • 2011-09-14. Weather, season, and daily stroke admissions in Hong Kong in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • 2021-03-12. The contrasting relationships of relative humidity with influenza A and B in a humid subtropical region in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12199-021-01030-3

    DOI

    http://dx.doi.org/10.1186/s12199-021-01030-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142606464

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34789160


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "China", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cities", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Climate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humidity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nonlinear Dynamics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Respiratory Tract Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006 China", 
              "id": "http://www.grid.ac/institutes/grid.411851.8", 
              "name": [
                "School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Shutian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Journalism & Communication, Guangdong University of Foreign Studies, Guangzhou, 510006 China", 
              "id": "http://www.grid.ac/institutes/grid.440718.e", 
              "name": [
                "School of Journalism & Communication, Guangdong University of Foreign Studies, Guangzhou, 510006 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Chao", 
            "id": "sg:person.012575261337.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012575261337.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440 China", 
              "id": "http://www.grid.ac/institutes/grid.508371.8", 
              "name": [
                "Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Guozhen", 
            "id": "sg:person.01237275373.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237275373.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department Public Health Solutions, National Institute for Health and Welfare, 00300 Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.14758.3f", 
              "name": [
                "Department Public Health Solutions, National Institute for Health and Welfare, 00300 Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00e4nninen", 
            "givenName": "Otto", 
            "id": "sg:person.01071675700.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071675700.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440 China", 
              "id": "http://www.grid.ac/institutes/grid.508371.8", 
              "name": [
                "Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dong", 
            "givenName": "Hang", 
            "id": "sg:person.01027777723.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027777723.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006 China", 
              "id": "http://www.grid.ac/institutes/grid.411851.8", 
              "name": [
                "School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Kairong", 
            "id": "sg:person.010025160477.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010025160477.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2288-14-55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032936014", 
              "https://doi.org/10.1186/1471-2288-14-55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-011-0491-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032125908", 
              "https://doi.org/10.1007/s00484-011-0491-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-018-3855-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110285590", 
              "https://doi.org/10.1007/s11356-018-3855-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11882-018-0777-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101747416", 
              "https://doi.org/10.1007/s11882-018-0777-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11882-018-0813-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107121612", 
              "https://doi.org/10.1007/s11882-018-0813-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-021-13107-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136342147", 
              "https://doi.org/10.1007/s11356-021-13107-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-17", 
        "datePublishedReg": "2021-11-17", 
        "description": "BACKGROUND: For the reason that many studies have been inconclusive on the effect of humidity on respiratory disease, we examined the association between absolute humidity and respiratory disease mortality and quantified the mortality burden due to non-optimal absolute humidity in Guangzhou, China.\nMETHODS: Daily respiratory disease mortality including total 42,440 deaths from 1 February 2013 to 31 December 2018 and meteorological data of the same period in Guangzhou City were collected. The distributed lag non-linear model was used to determine the optimal absolute humidity of death and discuss their non-linear lagged effects. Attributable fraction and population attributable mortality were calculated based on the optimal absolute humidity, defined as the minimum mortality absolute humidity.\nRESULTS: The association between absolute humidity and total respiratory disease mortality showed an M-shaped non-linear curve. In total, 21.57% (95% CI 14.20 ~ 27.75%) of respiratory disease mortality (9154 deaths) was attributable to non-optimum absolute humidity. The attributable fractions due to high absolute humidity were 13.49% (95% CI 9.56 ~ 16.98%), while mortality burden of low absolute humidity were 8.08% (95% CI 0.89 ~ 13.93%), respectively. Extreme dry and moist absolute humidity accounted for total respiratory disease mortality fraction of 0.87% (95% CI - 0.09 ~ 1.58%) and 0.91% (95% CI 0.25 ~ 1.39%), respectively. There was no significant gender and age difference in the burden of attributable risk due to absolute humidity.\nCONCLUSIONS: Our study showed that both high and low absolute humidity are responsible for considerable respiratory disease mortality burden, the component attributed to the high absolute humidity effect is greater. Our results may have important implications for the development of public health measures to reduce respiratory disease mortality.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12199-021-01030-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1115673", 
            "issn": [
              "1342-078X", 
              "1347-4715"
            ], 
            "name": "Environmental Health and Preventive Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "respiratory disease mortality", 
          "disease mortality", 
          "mortality burden", 
          "attributable fraction", 
          "public health measures", 
          "attributable mortality", 
          "attributable risk", 
          "respiratory disease", 
          "lag non-linear model", 
          "respiratory mortality", 
          "mortality fractions", 
          "health measures", 
          "mortality", 
          "low absolute humidity", 
          "burden", 
          "death", 
          "significant gender", 
          "high absolute humidity", 
          "same period", 
          "association", 
          "age differences", 
          "disease", 
          "total", 
          "risk", 
          "effect", 
          "study", 
          "important implications", 
          "gender", 
          "absolute humidity", 
          "fraction", 
          "period", 
          "differences", 
          "Guangzhou", 
          "role", 
          "Guangzhou City", 
          "measures", 
          "data", 
          "development", 
          "reasons", 
          "curves", 
          "implications", 
          "results", 
          "city", 
          "components", 
          "China", 
          "non-linear curve", 
          "model", 
          "non-linear model", 
          "South China", 
          "humidity", 
          "effect of humidity", 
          "meteorological data", 
          "humidity effects", 
          "non-optimal absolute humidity", 
          "Daily respiratory disease mortality", 
          "optimal absolute humidity", 
          "population attributable mortality", 
          "minimum mortality absolute humidity", 
          "mortality absolute humidity", 
          "total respiratory disease mortality", 
          "non-optimum absolute humidity", 
          "moist absolute humidity", 
          "total respiratory disease mortality fraction", 
          "respiratory disease mortality fraction", 
          "disease mortality fraction", 
          "considerable respiratory disease mortality burden", 
          "respiratory disease mortality burden", 
          "disease mortality burden", 
          "high absolute humidity effect", 
          "absolute humidity effect", 
          "wet cities"
        ], 
        "name": "The role of absolute humidity in respiratory mortality in Guangzhou, a hot and wet city of South China", 
        "pagination": "109", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142606464"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12199-021-01030-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34789160"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12199-021-01030-3", 
          "https://app.dimensions.ai/details/publication/pub.1142606464"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_906.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12199-021-01030-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01030-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01030-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01030-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01030-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    236 TRIPLES      22 PREDICATES      112 URIs      98 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12199-021-01030-3 schema:about N080b1eaeb41a4ceca6b2e092942b192a
    2 N16fb0f9ddbc2418487816bfca17a44cf
    3 N185d914172234632a2769f4534b4d480
    4 N2f54d12692324a33917265127fe8ee16
    5 N7db47939e9e64aafa79ad703f068990d
    6 N8448c6f715fb461fb84f52374d7728cf
    7 N99d4febab0594f65968e560d70daac46
    8 Nb5b30f998ac1473ca2bc58c4dd91a6de
    9 Nc55efd2a956e4982bfe5faa175b96821
    10 anzsrc-for:11
    11 anzsrc-for:1117
    12 schema:author Ne5bbbe4ad694499db8d5535eda171a55
    13 schema:citation sg:pub.10.1007/s00484-011-0491-9
    14 sg:pub.10.1007/s11356-018-3855-4
    15 sg:pub.10.1007/s11356-021-13107-1
    16 sg:pub.10.1007/s11882-018-0777-7
    17 sg:pub.10.1007/s11882-018-0813-7
    18 sg:pub.10.1186/1471-2288-14-55
    19 schema:datePublished 2021-11-17
    20 schema:datePublishedReg 2021-11-17
    21 schema:description BACKGROUND: For the reason that many studies have been inconclusive on the effect of humidity on respiratory disease, we examined the association between absolute humidity and respiratory disease mortality and quantified the mortality burden due to non-optimal absolute humidity in Guangzhou, China. METHODS: Daily respiratory disease mortality including total 42,440 deaths from 1 February 2013 to 31 December 2018 and meteorological data of the same period in Guangzhou City were collected. The distributed lag non-linear model was used to determine the optimal absolute humidity of death and discuss their non-linear lagged effects. Attributable fraction and population attributable mortality were calculated based on the optimal absolute humidity, defined as the minimum mortality absolute humidity. RESULTS: The association between absolute humidity and total respiratory disease mortality showed an M-shaped non-linear curve. In total, 21.57% (95% CI 14.20 ~ 27.75%) of respiratory disease mortality (9154 deaths) was attributable to non-optimum absolute humidity. The attributable fractions due to high absolute humidity were 13.49% (95% CI 9.56 ~ 16.98%), while mortality burden of low absolute humidity were 8.08% (95% CI 0.89 ~ 13.93%), respectively. Extreme dry and moist absolute humidity accounted for total respiratory disease mortality fraction of 0.87% (95% CI - 0.09 ~ 1.58%) and 0.91% (95% CI 0.25 ~ 1.39%), respectively. There was no significant gender and age difference in the burden of attributable risk due to absolute humidity. CONCLUSIONS: Our study showed that both high and low absolute humidity are responsible for considerable respiratory disease mortality burden, the component attributed to the high absolute humidity effect is greater. Our results may have important implications for the development of public health measures to reduce respiratory disease mortality.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N5cdbb79f7073491ab49f627387ec84b8
    26 Nceac7a32c7f747f0aca3240e4f3180a7
    27 sg:journal.1115673
    28 schema:keywords China
    29 Daily respiratory disease mortality
    30 Guangzhou
    31 Guangzhou City
    32 South China
    33 absolute humidity
    34 absolute humidity effect
    35 age differences
    36 association
    37 attributable fraction
    38 attributable mortality
    39 attributable risk
    40 burden
    41 city
    42 components
    43 considerable respiratory disease mortality burden
    44 curves
    45 data
    46 death
    47 development
    48 differences
    49 disease
    50 disease mortality
    51 disease mortality burden
    52 disease mortality fraction
    53 effect
    54 effect of humidity
    55 fraction
    56 gender
    57 health measures
    58 high absolute humidity
    59 high absolute humidity effect
    60 humidity
    61 humidity effects
    62 implications
    63 important implications
    64 lag non-linear model
    65 low absolute humidity
    66 measures
    67 meteorological data
    68 minimum mortality absolute humidity
    69 model
    70 moist absolute humidity
    71 mortality
    72 mortality absolute humidity
    73 mortality burden
    74 mortality fractions
    75 non-linear curve
    76 non-linear model
    77 non-optimal absolute humidity
    78 non-optimum absolute humidity
    79 optimal absolute humidity
    80 period
    81 population attributable mortality
    82 public health measures
    83 reasons
    84 respiratory disease
    85 respiratory disease mortality
    86 respiratory disease mortality burden
    87 respiratory disease mortality fraction
    88 respiratory mortality
    89 results
    90 risk
    91 role
    92 same period
    93 significant gender
    94 study
    95 total
    96 total respiratory disease mortality
    97 total respiratory disease mortality fraction
    98 wet cities
    99 schema:name The role of absolute humidity in respiratory mortality in Guangzhou, a hot and wet city of South China
    100 schema:pagination 109
    101 schema:productId N72faa6342f3b4459ab506cf4b52ce96f
    102 N8c6a0ccc57f6418da19be9ee898a7623
    103 N9c00a274cdb44041bcf3f69f8c2ed48c
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142606464
    105 https://doi.org/10.1186/s12199-021-01030-3
    106 schema:sdDatePublished 2022-01-01T19:03
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N148a14dbc8834320a0b92c30666327d2
    109 schema:url https://doi.org/10.1186/s12199-021-01030-3
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N080b1eaeb41a4ceca6b2e092942b192a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Nonlinear Dynamics
    115 rdf:type schema:DefinedTerm
    116 N148a14dbc8834320a0b92c30666327d2 schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 N16fb0f9ddbc2418487816bfca17a44cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name China
    120 rdf:type schema:DefinedTerm
    121 N185d914172234632a2769f4534b4d480 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Cities
    123 rdf:type schema:DefinedTerm
    124 N1c318b4d211f4b8080a24e8305c06d5e schema:affiliation grid-institutes:grid.411851.8
    125 schema:familyName Chen
    126 schema:givenName Shutian
    127 rdf:type schema:Person
    128 N25269a6f04d14098bc02442f755ca973 rdf:first sg:person.01237275373.17
    129 rdf:rest Nce2ba7a32eb84b67a9ce619dc0b90ae1
    130 N2f54d12692324a33917265127fe8ee16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Climate
    132 rdf:type schema:DefinedTerm
    133 N50c1a1587e0046258640b2a81e2e45b9 rdf:first sg:person.012575261337.14
    134 rdf:rest N25269a6f04d14098bc02442f755ca973
    135 N5cdbb79f7073491ab49f627387ec84b8 schema:volumeNumber 26
    136 rdf:type schema:PublicationVolume
    137 N72faa6342f3b4459ab506cf4b52ce96f schema:name dimensions_id
    138 schema:value pub.1142606464
    139 rdf:type schema:PropertyValue
    140 N7db47939e9e64aafa79ad703f068990d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Models, Theoretical
    142 rdf:type schema:DefinedTerm
    143 N8448c6f715fb461fb84f52374d7728cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Humidity
    145 rdf:type schema:DefinedTerm
    146 N8c6a0ccc57f6418da19be9ee898a7623 schema:name doi
    147 schema:value 10.1186/s12199-021-01030-3
    148 rdf:type schema:PropertyValue
    149 N921c029a59d84efe91c82e0b6f230f83 rdf:first sg:person.01027777723.73
    150 rdf:rest Nabb6841ca9d3490bbf6cd29dca6889df
    151 N99d4febab0594f65968e560d70daac46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Humans
    153 rdf:type schema:DefinedTerm
    154 N9c00a274cdb44041bcf3f69f8c2ed48c schema:name pubmed_id
    155 schema:value 34789160
    156 rdf:type schema:PropertyValue
    157 Nabb6841ca9d3490bbf6cd29dca6889df rdf:first sg:person.010025160477.65
    158 rdf:rest rdf:nil
    159 Nb5b30f998ac1473ca2bc58c4dd91a6de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Sensitivity and Specificity
    161 rdf:type schema:DefinedTerm
    162 Nc55efd2a956e4982bfe5faa175b96821 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Respiratory Tract Diseases
    164 rdf:type schema:DefinedTerm
    165 Nce2ba7a32eb84b67a9ce619dc0b90ae1 rdf:first sg:person.01071675700.38
    166 rdf:rest N921c029a59d84efe91c82e0b6f230f83
    167 Nceac7a32c7f747f0aca3240e4f3180a7 schema:issueNumber 1
    168 rdf:type schema:PublicationIssue
    169 Ne5bbbe4ad694499db8d5535eda171a55 rdf:first N1c318b4d211f4b8080a24e8305c06d5e
    170 rdf:rest N50c1a1587e0046258640b2a81e2e45b9
    171 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Medical and Health Sciences
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Public Health and Health Services
    176 rdf:type schema:DefinedTerm
    177 sg:journal.1115673 schema:issn 1342-078X
    178 1347-4715
    179 schema:name Environmental Health and Preventive Medicine
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.010025160477.65 schema:affiliation grid-institutes:grid.411851.8
    183 schema:familyName Xiong
    184 schema:givenName Kairong
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010025160477.65
    186 rdf:type schema:Person
    187 sg:person.01027777723.73 schema:affiliation grid-institutes:grid.508371.8
    188 schema:familyName Dong
    189 schema:givenName Hang
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027777723.73
    191 rdf:type schema:Person
    192 sg:person.01071675700.38 schema:affiliation grid-institutes:grid.14758.3f
    193 schema:familyName Hänninen
    194 schema:givenName Otto
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071675700.38
    196 rdf:type schema:Person
    197 sg:person.01237275373.17 schema:affiliation grid-institutes:grid.508371.8
    198 schema:familyName Lin
    199 schema:givenName Guozhen
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237275373.17
    201 rdf:type schema:Person
    202 sg:person.012575261337.14 schema:affiliation grid-institutes:grid.440718.e
    203 schema:familyName Liu
    204 schema:givenName Chao
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012575261337.14
    206 rdf:type schema:Person
    207 sg:pub.10.1007/s00484-011-0491-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032125908
    208 https://doi.org/10.1007/s00484-011-0491-9
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s11356-018-3855-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110285590
    211 https://doi.org/10.1007/s11356-018-3855-4
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s11356-021-13107-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136342147
    214 https://doi.org/10.1007/s11356-021-13107-1
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s11882-018-0777-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101747416
    217 https://doi.org/10.1007/s11882-018-0777-7
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s11882-018-0813-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107121612
    220 https://doi.org/10.1007/s11882-018-0813-7
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1186/1471-2288-14-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032936014
    223 https://doi.org/10.1186/1471-2288-14-55
    224 rdf:type schema:CreativeWork
    225 grid-institutes:grid.14758.3f schema:alternateName Department Public Health Solutions, National Institute for Health and Welfare, 00300 Helsinki, Finland
    226 schema:name Department Public Health Solutions, National Institute for Health and Welfare, 00300 Helsinki, Finland
    227 rdf:type schema:Organization
    228 grid-institutes:grid.411851.8 schema:alternateName School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006 China
    229 schema:name School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006 China
    230 rdf:type schema:Organization
    231 grid-institutes:grid.440718.e schema:alternateName School of Journalism & Communication, Guangdong University of Foreign Studies, Guangzhou, 510006 China
    232 schema:name School of Journalism & Communication, Guangdong University of Foreign Studies, Guangzhou, 510006 China
    233 rdf:type schema:Organization
    234 grid-institutes:grid.508371.8 schema:alternateName Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440 China
    235 schema:name Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440 China
    236 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...