Factors influencing protective behavior in the post-COVID-19 period in China: a cross-sectional study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-23

AUTHORS

Guiqian Shi, Xiaoni Zhong, Wei He, Hui Liu, Xiaoyan Liu, Mingzhu Ma

ABSTRACT

BACKGROUND: The study aimed to explore the factors influencing protective behavior and its association with factors during the post-COVID-19 period in China based on the risk perception emotion model and the protective action decision model (PADM). METHODS: A total of 2830 valid questionnaires were collected as data for empirical analysis via network sampling in China. Structural equation modeling (SEM) was performed to explore the relationships between the latent variables. RESULTS: SEM indicated that social emotion significantly positively affected protective behavior and intention. Protective behavioral intention had significant direct effects on protective behavior, and the direct effects were also the largest. Government trust did not have a significant effect on protective behavior but did have a significant indirect effect. Moreover, it was found that government trust had the greatest direct effect on social emotion. In addition, we found that excessive risk perception level may directly reduce people's intention and frequency of engaging in protective behavior, which was not conducive to positive, protective behavior. CONCLUSION: In the post-COVID-19 period, theoretical framework constructed in this study can be used to evaluate people's protective behavior. The government should strengthen its information-sharing and interaction with the public, enhance people's trust in the government, create a positive social mood, appropriately regulate people's risk perception, and, finally, maintain a positive attitude and intent of protection. More... »

PAGES

95

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12199-021-01015-2

DOI

http://dx.doi.org/10.1186/s12199-021-01015-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141319828

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34556043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Communicable Disease Control", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Emotions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Behavior", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intention", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Latent Class Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "SARS-CoV-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Social Behavior", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trust", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China", 
          "id": "http://www.grid.ac/institutes/grid.203458.8", 
          "name": [
            "Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China", 
            "Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China", 
            "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Guiqian", 
        "id": "sg:person.010331254414.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010331254414.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China", 
          "id": "http://www.grid.ac/institutes/grid.203458.8", 
          "name": [
            "Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China", 
            "Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China", 
            "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Xiaoni", 
        "id": "sg:person.01043227212.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043227212.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China", 
          "id": "http://www.grid.ac/institutes/grid.203458.8", 
          "name": [
            "Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China", 
            "Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China", 
            "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China", 
          "id": "http://www.grid.ac/institutes/grid.203458.8", 
          "name": [
            "Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China", 
            "Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China", 
            "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China", 
          "id": "http://www.grid.ac/institutes/grid.203458.8", 
          "name": [
            "Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China", 
            "Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China", 
            "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xiaoyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China", 
          "id": "http://www.grid.ac/institutes/grid.203458.8", 
          "name": [
            "Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China", 
            "Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China", 
            "Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Mingzhu", 
        "id": "sg:person.07504156467.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504156467.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12144-021-02079-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1139697633", 
          "https://doi.org/10.1007/s12144-021-02079-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00148-020-00818-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134547074", 
          "https://doi.org/10.1007/s00148-020-00818-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.rm.8250038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043229172", 
          "https://doi.org/10.1057/palgrave.rm.8250038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10865-007-9094-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023723947", 
          "https://doi.org/10.1007/s10865-007-9094-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40615-020-00941-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134704565", 
          "https://doi.org/10.1007/s40615-020-00941-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-09-23", 
    "datePublishedReg": "2021-09-23", 
    "description": "BACKGROUND: The study aimed to explore the factors influencing protective behavior and its association with factors during the post-COVID-19 period in China based on the risk perception emotion model and the protective action decision model (PADM).\nMETHODS: A total of 2830 valid questionnaires were collected as data for empirical analysis via network sampling in China. Structural equation modeling (SEM) was performed to explore the relationships between the latent variables.\nRESULTS: SEM indicated that social emotion significantly positively affected protective behavior and intention. Protective behavioral intention had significant direct effects on protective behavior, and the direct effects were also the largest. Government trust did not have a significant effect on protective behavior but did have a significant indirect effect. Moreover, it was found that government trust had the greatest direct effect on social emotion. In addition, we found that excessive risk perception level may directly reduce people's intention and frequency of engaging in protective behavior, which was not conducive to positive, protective behavior.\nCONCLUSION: In the post-COVID-19 period, theoretical framework constructed in this study can be used to evaluate people's protective behavior. The government should strengthen its information-sharing and interaction with the public, enhance people's trust in the government, create a positive social mood, appropriately regulate people's risk perception, and, finally, maintain a positive attitude and intent of protection.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12199-021-01015-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1115673", 
        "issn": [
          "1342-078X", 
          "1347-4715"
        ], 
        "name": "Environmental Health and Preventive Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "structural equation modeling", 
      "protective action decision model", 
      "social emotions", 
      "protective behaviors", 
      "significant indirect effect", 
      "risk perception", 
      "significant direct effect", 
      "emotion model", 
      "people's risk perception", 
      "people's intentions", 
      "protective behavioral intentions", 
      "equation modeling", 
      "behavioral intentions", 
      "direct effect", 
      "risk perception levels", 
      "government trust", 
      "greatest direct effect", 
      "positive attitudes", 
      "people's trust", 
      "perception level", 
      "indirect effects", 
      "emotions", 
      "latent variables", 
      "valid questionnaires", 
      "intention", 
      "theoretical framework", 
      "trust", 
      "social mood", 
      "mood", 
      "behavior", 
      "perception", 
      "decision model", 
      "attitudes", 
      "empirical analysis", 
      "cross-sectional study", 
      "government", 
      "questionnaire", 
      "significant effect", 
      "China", 
      "relationship", 
      "intent", 
      "study", 
      "variables", 
      "factors", 
      "effect", 
      "network sampling", 
      "association", 
      "public", 
      "model", 
      "framework", 
      "interaction", 
      "modeling", 
      "levels", 
      "period", 
      "protection", 
      "data", 
      "analysis", 
      "sampling", 
      "addition", 
      "total", 
      "frequency", 
      "risk perception emotion model", 
      "perception emotion model", 
      "action decision model", 
      "affected protective behavior", 
      "excessive risk perception level", 
      "people's protective behavior", 
      "positive social mood", 
      "intent of protection"
    ], 
    "name": "Factors influencing protective behavior in the post-COVID-19 period in China: a cross-sectional study", 
    "pagination": "95", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141319828"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12199-021-01015-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34556043"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12199-021-01015-2", 
      "https://app.dimensions.ai/details/publication/pub.1141319828"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_906.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12199-021-01015-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01015-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01015-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01015-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01015-2'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      22 PREDICATES      121 URIs      108 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12199-021-01015-2 schema:about N00beb416c4cc4a368d3822d9b277f071
2 N32934275a6d6408dadedc45e658bdcb0
3 N464e75bc3e394d02af92220006fc440a
4 N5bb15c9178344e29a0d3fb59fc1c28bb
5 N61117300b8f740f59c32002ee0652932
6 N6f15cb15f76845238d367c5edb2f294f
7 N733cc0b3d8c04caba238ef6c634eb21e
8 N83341045dbf54ed8876e4e5efa7902d8
9 N89388529b3974acb81a9b94ff97e3f96
10 N8956f85cc89343c2ad8f7a926ea07825
11 N984b7ecde200416684d32d015e7f965c
12 Na723ce0c79b243b89f0c53fbf96977c9
13 Ne39c86f63f6f442aa3f91b50473a8e08
14 Ne3fe00a590514693aafb43898f95e329
15 Ne537f70c29824a0181a8273656740a8b
16 Ne8fff5d6ce254b7dbfca7b9f561bb2d8
17 Neca39ba64ab94e10b7ead0ebbbe38d9d
18 Neccd7a7f1ff7440e922bc0b9863cdb02
19 Nf7a4b8fff9194bfdb7bf9035be5bd239
20 Nf9c044cc7c9343dea4f4fb16d5f2e116
21 Nfae36f59df00462ab434f62566f5b87b
22 anzsrc-for:11
23 anzsrc-for:1117
24 schema:author Na8000f58630049afb6934622d6654058
25 schema:citation sg:pub.10.1007/s00148-020-00818-x
26 sg:pub.10.1007/s10865-007-9094-7
27 sg:pub.10.1007/s12144-021-02079-7
28 sg:pub.10.1007/s40615-020-00941-1
29 sg:pub.10.1057/palgrave.rm.8250038
30 schema:datePublished 2021-09-23
31 schema:datePublishedReg 2021-09-23
32 schema:description BACKGROUND: The study aimed to explore the factors influencing protective behavior and its association with factors during the post-COVID-19 period in China based on the risk perception emotion model and the protective action decision model (PADM). METHODS: A total of 2830 valid questionnaires were collected as data for empirical analysis via network sampling in China. Structural equation modeling (SEM) was performed to explore the relationships between the latent variables. RESULTS: SEM indicated that social emotion significantly positively affected protective behavior and intention. Protective behavioral intention had significant direct effects on protective behavior, and the direct effects were also the largest. Government trust did not have a significant effect on protective behavior but did have a significant indirect effect. Moreover, it was found that government trust had the greatest direct effect on social emotion. In addition, we found that excessive risk perception level may directly reduce people's intention and frequency of engaging in protective behavior, which was not conducive to positive, protective behavior. CONCLUSION: In the post-COVID-19 period, theoretical framework constructed in this study can be used to evaluate people's protective behavior. The government should strengthen its information-sharing and interaction with the public, enhance people's trust in the government, create a positive social mood, appropriately regulate people's risk perception, and, finally, maintain a positive attitude and intent of protection.
33 schema:genre article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N64198fc2f6dc43679b3b4e28e12ab5bb
37 Nf028bf67997e438482551b80dc08cc04
38 sg:journal.1115673
39 schema:keywords China
40 action decision model
41 addition
42 affected protective behavior
43 analysis
44 association
45 attitudes
46 behavior
47 behavioral intentions
48 cross-sectional study
49 data
50 decision model
51 direct effect
52 effect
53 emotion model
54 emotions
55 empirical analysis
56 equation modeling
57 excessive risk perception level
58 factors
59 framework
60 frequency
61 government
62 government trust
63 greatest direct effect
64 indirect effects
65 intent
66 intent of protection
67 intention
68 interaction
69 latent variables
70 levels
71 model
72 modeling
73 mood
74 network sampling
75 people's intentions
76 people's protective behavior
77 people's risk perception
78 people's trust
79 perception
80 perception emotion model
81 perception level
82 period
83 positive attitudes
84 positive social mood
85 protection
86 protective action decision model
87 protective behavioral intentions
88 protective behaviors
89 public
90 questionnaire
91 relationship
92 risk perception
93 risk perception emotion model
94 risk perception levels
95 sampling
96 significant direct effect
97 significant effect
98 significant indirect effect
99 social emotions
100 social mood
101 structural equation modeling
102 study
103 theoretical framework
104 total
105 trust
106 valid questionnaires
107 variables
108 schema:name Factors influencing protective behavior in the post-COVID-19 period in China: a cross-sectional study
109 schema:pagination 95
110 schema:productId N4208f391a72d431796847cfa6e01f53b
111 N732f53eea71c486787106774a8b6d9d2
112 N9f06e1b054174a8fa8c4c7a0a8ea66fb
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141319828
114 https://doi.org/10.1186/s12199-021-01015-2
115 schema:sdDatePublished 2022-01-01T19:03
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher Ne8cbe6cb4ee84f8aa97190845d0d3c91
118 schema:url https://doi.org/10.1186/s12199-021-01015-2
119 sgo:license sg:explorer/license/
120 sgo:sdDataset articles
121 rdf:type schema:ScholarlyArticle
122 N00beb416c4cc4a368d3822d9b277f071 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Health Behavior
124 rdf:type schema:DefinedTerm
125 N08978601bde746b9bec9c6072f6b4909 schema:affiliation grid-institutes:grid.203458.8
126 schema:familyName He
127 schema:givenName Wei
128 rdf:type schema:Person
129 N0b12ef59263d49b987b8ec7f91a67331 schema:affiliation grid-institutes:grid.203458.8
130 schema:familyName Liu
131 schema:givenName Hui
132 rdf:type schema:Person
133 N1859db2f8277407f959757cf1f874668 rdf:first sg:person.01043227212.86
134 rdf:rest N5053164c9b58443f8bc9514b2b1f3b64
135 N32934275a6d6408dadedc45e658bdcb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name SARS-CoV-2
137 rdf:type schema:DefinedTerm
138 N33f48c9390ce43aaa29cc72b0a2528a3 rdf:first sg:person.07504156467.71
139 rdf:rest rdf:nil
140 N4208f391a72d431796847cfa6e01f53b schema:name dimensions_id
141 schema:value pub.1141319828
142 rdf:type schema:PropertyValue
143 N464e75bc3e394d02af92220006fc440a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Humans
145 rdf:type schema:DefinedTerm
146 N5053164c9b58443f8bc9514b2b1f3b64 rdf:first N08978601bde746b9bec9c6072f6b4909
147 rdf:rest N7b7676a77db0414f9a5444c84198fae3
148 N5bb15c9178344e29a0d3fb59fc1c28bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Middle Aged
150 rdf:type schema:DefinedTerm
151 N601ffb01c0c84a0c9fea3bbf075e0751 rdf:first Ncdc5146936c9493ab99c04d874223332
152 rdf:rest N33f48c9390ce43aaa29cc72b0a2528a3
153 N61117300b8f740f59c32002ee0652932 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Latent Class Analysis
155 rdf:type schema:DefinedTerm
156 N64198fc2f6dc43679b3b4e28e12ab5bb schema:issueNumber 1
157 rdf:type schema:PublicationIssue
158 N6f15cb15f76845238d367c5edb2f294f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Communicable Disease Control
160 rdf:type schema:DefinedTerm
161 N732f53eea71c486787106774a8b6d9d2 schema:name pubmed_id
162 schema:value 34556043
163 rdf:type schema:PropertyValue
164 N733cc0b3d8c04caba238ef6c634eb21e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Female
166 rdf:type schema:DefinedTerm
167 N7b7676a77db0414f9a5444c84198fae3 rdf:first N0b12ef59263d49b987b8ec7f91a67331
168 rdf:rest N601ffb01c0c84a0c9fea3bbf075e0751
169 N83341045dbf54ed8876e4e5efa7902d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Trust
171 rdf:type schema:DefinedTerm
172 N89388529b3974acb81a9b94ff97e3f96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Social Behavior
174 rdf:type schema:DefinedTerm
175 N8956f85cc89343c2ad8f7a926ea07825 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name China
177 rdf:type schema:DefinedTerm
178 N984b7ecde200416684d32d015e7f965c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Surveys and Questionnaires
180 rdf:type schema:DefinedTerm
181 N9f06e1b054174a8fa8c4c7a0a8ea66fb schema:name doi
182 schema:value 10.1186/s12199-021-01015-2
183 rdf:type schema:PropertyValue
184 Na723ce0c79b243b89f0c53fbf96977c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Aged
186 rdf:type schema:DefinedTerm
187 Na8000f58630049afb6934622d6654058 rdf:first sg:person.010331254414.82
188 rdf:rest N1859db2f8277407f959757cf1f874668
189 Ncdc5146936c9493ab99c04d874223332 schema:affiliation grid-institutes:grid.203458.8
190 schema:familyName Liu
191 schema:givenName Xiaoyan
192 rdf:type schema:Person
193 Ne39c86f63f6f442aa3f91b50473a8e08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Intention
195 rdf:type schema:DefinedTerm
196 Ne3fe00a590514693aafb43898f95e329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Young Adult
198 rdf:type schema:DefinedTerm
199 Ne537f70c29824a0181a8273656740a8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Adult
201 rdf:type schema:DefinedTerm
202 Ne8cbe6cb4ee84f8aa97190845d0d3c91 schema:name Springer Nature - SN SciGraph project
203 rdf:type schema:Organization
204 Ne8fff5d6ce254b7dbfca7b9f561bb2d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name COVID-19
206 rdf:type schema:DefinedTerm
207 Neca39ba64ab94e10b7ead0ebbbe38d9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Adolescent
209 rdf:type schema:DefinedTerm
210 Neccd7a7f1ff7440e922bc0b9863cdb02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Aged, 80 and over
212 rdf:type schema:DefinedTerm
213 Nf028bf67997e438482551b80dc08cc04 schema:volumeNumber 26
214 rdf:type schema:PublicationVolume
215 Nf7a4b8fff9194bfdb7bf9035be5bd239 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Emotions
217 rdf:type schema:DefinedTerm
218 Nf9c044cc7c9343dea4f4fb16d5f2e116 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Cross-Sectional Studies
220 rdf:type schema:DefinedTerm
221 Nfae36f59df00462ab434f62566f5b87b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Male
223 rdf:type schema:DefinedTerm
224 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
225 schema:name Medical and Health Sciences
226 rdf:type schema:DefinedTerm
227 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
228 schema:name Public Health and Health Services
229 rdf:type schema:DefinedTerm
230 sg:journal.1115673 schema:issn 1342-078X
231 1347-4715
232 schema:name Environmental Health and Preventive Medicine
233 schema:publisher Springer Nature
234 rdf:type schema:Periodical
235 sg:person.010331254414.82 schema:affiliation grid-institutes:grid.203458.8
236 schema:familyName Shi
237 schema:givenName Guiqian
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010331254414.82
239 rdf:type schema:Person
240 sg:person.01043227212.86 schema:affiliation grid-institutes:grid.203458.8
241 schema:familyName Zhong
242 schema:givenName Xiaoni
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043227212.86
244 rdf:type schema:Person
245 sg:person.07504156467.71 schema:affiliation grid-institutes:grid.203458.8
246 schema:familyName Ma
247 schema:givenName Mingzhu
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504156467.71
249 rdf:type schema:Person
250 sg:pub.10.1007/s00148-020-00818-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1134547074
251 https://doi.org/10.1007/s00148-020-00818-x
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s10865-007-9094-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023723947
254 https://doi.org/10.1007/s10865-007-9094-7
255 rdf:type schema:CreativeWork
256 sg:pub.10.1007/s12144-021-02079-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139697633
257 https://doi.org/10.1007/s12144-021-02079-7
258 rdf:type schema:CreativeWork
259 sg:pub.10.1007/s40615-020-00941-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134704565
260 https://doi.org/10.1007/s40615-020-00941-1
261 rdf:type schema:CreativeWork
262 sg:pub.10.1057/palgrave.rm.8250038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043229172
263 https://doi.org/10.1057/palgrave.rm.8250038
264 rdf:type schema:CreativeWork
265 grid-institutes:grid.203458.8 schema:alternateName Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
266 schema:name Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
267 Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
268 Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...