Education and household income and carotid intima-media thickness in Japan: baseline data from the Aidai Cohort Study in Yawatahama, Uchiko, ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-09

AUTHORS

Yoshihiro Miyake, Keiko Tanaka, Hidenori Senba, Yasuko Hasebe, Toyohisa Miyata, Takashi Higaki, Eizen Kimura, Bunzo Matsuura, Ryuichi Kawamoto

ABSTRACT

BackgroundEpidemiological evidence for the relationship between education and income and carotid intima-media thickness (CIMT) has been limited and inconsistent. The present cross-sectional study investigated this issue using baseline data from the Aidai Cohort Study.MethodsStudy subjects were 2012 Japanese men and women aged 34−88 years. Right and left CIMT were measured at the common carotid artery using an automated carotid ultrasonography device. Maximum CIMT was defined as the largest CIMT value in either the left or right common carotid artery. Carotid wall thickening was defined as a maximum CIMT value > 1.0 mm.ResultsThe prevalence of carotid wall thickening was 13.0%. In participants under 60 years of age (n = 703) and in those aged 60 to 69 years (n = 837), neither education nor household income was associated with carotid wall thickening or with maximum CIMT. Among those aged 70 years or older (n = 472), however, higher educational level, but not household income, was independently related to a lower prevalence of carotid wall thickening: the multivariate-adjusted odds ratio for high vs. low educational level was 0.43 (95% confidence interval 0.21−0.83, p for trend = 0.01). A significant inverse association was observed between education, but not household income, and maximum CIMT (p for trend = 0.006).ConclusionsHigher educational level may be associated with a lower prevalence of carotid wall thickening and a decrease in maximum CIMT only in participants aged 70 years or older. More... »

PAGES

88

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12199-021-01011-6

DOI

http://dx.doi.org/10.1186/s12199-021-01011-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141009666

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34503448


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Intima-Media Thickness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Educational Status", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Income", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Odds Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Data Science, Ehime University, Matsuyama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Toon, Japan", 
            "Research Promotion Unit, Translation Research Center, Ehime University Hospital, Toon, Japan", 
            "Center for Data Science, Ehime University, Matsuyama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyake", 
        "givenName": "Yoshihiro", 
        "id": "sg:person.01355675713.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355675713.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Data Science, Ehime University, Matsuyama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Toon, Japan", 
            "Research Promotion Unit, Translation Research Center, Ehime University Hospital, Toon, Japan", 
            "Center for Data Science, Ehime University, Matsuyama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Keiko", 
        "id": "sg:person.01076514272.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076514272.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Matsuyama Shimin Hospital, Matsuyama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.459780.7", 
          "name": [
            "Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Toon, Japan", 
            "Department of Internal Medicine, Matsuyama Shimin Hospital, Matsuyama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Senba", 
        "givenName": "Hidenori", 
        "id": "sg:person.016660012741.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016660012741.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Junpu Health Care Center, Matsuyama, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Junpu Health Care Center, Matsuyama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasebe", 
        "givenName": "Yasuko", 
        "id": "sg:person.07536513520.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536513520.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Toon, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Toon, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyata", 
        "givenName": "Toyohisa", 
        "id": "sg:person.012317637353.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317637353.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Toon, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Toon, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higaki", 
        "givenName": "Takashi", 
        "id": "sg:person.0642775411.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642775411.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Informatics, Ehime University Graduate School of Medicine, Toon, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Center for Data Science, Ehime University, Matsuyama, Japan", 
            "Department of Medical Informatics, Ehime University Graduate School of Medicine, Toon, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Eizen", 
        "id": "sg:person.0774663244.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774663244.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Lifestyle-Related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Toon, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Lifestyle-Related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Toon, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuura", 
        "givenName": "Bunzo", 
        "id": "sg:person.0607425152.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607425152.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Community Medicine, Ehime University Graduate School of Medicine, Toon, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Community Medicine, Ehime University Graduate School of Medicine, Toon, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawamoto", 
        "givenName": "Ryuichi", 
        "id": "sg:person.01305053622.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305053622.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41440-020-0444-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127508317", 
          "https://doi.org/10.1038/s41440-020-0444-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10396-009-0238-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023456786", 
          "https://doi.org/10.1007/s10396-009-0238-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-09-09", 
    "datePublishedReg": "2021-09-09", 
    "description": "BackgroundEpidemiological evidence for the relationship between education and income and carotid intima-media thickness (CIMT) has been limited and inconsistent. The present cross-sectional study investigated this issue using baseline data from the Aidai Cohort Study.MethodsStudy subjects were 2012 Japanese men and women aged 34\u221288 years. Right and left CIMT were measured at the common carotid artery using an automated carotid ultrasonography device. Maximum CIMT was defined as the largest CIMT value in either the left or right common carotid artery. Carotid wall thickening was defined as a maximum CIMT value > 1.0 mm.ResultsThe prevalence of carotid wall thickening was 13.0%. In participants under 60 years of age (n = 703) and in those aged 60 to 69 years (n = 837), neither education nor household income was associated with carotid wall thickening or with maximum CIMT. Among those aged 70 years or older (n = 472), however, higher educational level, but not household income, was independently related to a lower prevalence of carotid wall thickening: the multivariate-adjusted odds ratio for high vs. low educational level was 0.43 (95% confidence interval 0.21\u22120.83, p for trend = 0.01). A significant inverse association was observed between education, but not household income, and maximum CIMT (p for trend = 0.006).ConclusionsHigher educational level may be associated with a lower prevalence of carotid wall thickening and a decrease in maximum CIMT only in participants aged 70 years or older.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12199-021-01011-6", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9673313", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9201236", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115673", 
        "issn": [
          "1342-078X", 
          "1347-4715"
        ], 
        "name": "Environmental Health and Preventive Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "carotid intima-media thickness", 
      "maximum carotid intima-media thickness", 
      "carotid wall thickening", 
      "intima-media thickness", 
      "common carotid artery", 
      "wall thickening", 
      "cohort study", 
      "CIMT values", 
      "carotid artery", 
      "low prevalence", 
      "multivariate-adjusted odds ratio", 
      "right common carotid artery", 
      "present cross-sectional study", 
      "educational level", 
      "significant inverse association", 
      "cross-sectional study", 
      "baseline data", 
      "years of age", 
      "maximum cIMT value", 
      "low educational level", 
      "higher educational level", 
      "MethodsStudy subjects", 
      "ResultsThe prevalence", 
      "household income", 
      "Japanese men", 
      "odds ratio", 
      "inverse association", 
      "ultrasonography device", 
      "prevalence", 
      "artery", 
      "thickening", 
      "years", 
      "participants", 
      "levels", 
      "women", 
      "study", 
      "age", 
      "men", 
      "association", 
      "subjects", 
      "evidence", 
      "education", 
      "income", 
      "data", 
      "decrease", 
      "Ainan", 
      "values", 
      "relationship", 
      "ratio", 
      "Japan", 
      "thickness", 
      "issues", 
      "devices"
    ], 
    "name": "Education and household income and carotid intima-media thickness in Japan: baseline data from the Aidai Cohort Study in Yawatahama, Uchiko, Seiyo, and Ainan", 
    "pagination": "88", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141009666"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12199-021-01011-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34503448"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12199-021-01011-6", 
      "https://app.dimensions.ai/details/publication/pub.1141009666"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_908.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12199-021-01011-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01011-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01011-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01011-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12199-021-01011-6'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      95 URIs      85 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12199-021-01011-6 schema:about N14eef9c8cb7840499f0165e8d566fe50
2 N1a537a4801ee42fc8874b6ef28f42ff2
3 N27070b4fd4bf49cfb58906d6d9c11735
4 N32c298374d9f49bda22901b22eed41c1
5 N37cf57fc801d4639a468e6a99c8bc01e
6 N3f442ab910c84f8991cddd343349d6c3
7 N64f39a834933488e86b6f2af46ed8ff4
8 N706085cb01724d8fa68d822a8cfb90e4
9 N72703285c64d42779d688a21baa8a069
10 N9871a0305a6c4769baa55557872891b0
11 Nb666b2d27794488e9e503c128576039c
12 Nb914d08e050146209c785580260ff9f5
13 Nbf4cb0e5f8a24827863d1bde367d7cfb
14 Ndef23b2c6fd541f8908509a3a7a5e87f
15 Ne909d1c8ca9b47a49944e7a98f94af5c
16 anzsrc-for:11
17 anzsrc-for:1117
18 schema:author N323b93512f274743bfe70ff3c6c3d71d
19 schema:citation sg:pub.10.1007/s10396-009-0238-y
20 sg:pub.10.1038/s41440-020-0444-y
21 schema:datePublished 2021-09-09
22 schema:datePublishedReg 2021-09-09
23 schema:description BackgroundEpidemiological evidence for the relationship between education and income and carotid intima-media thickness (CIMT) has been limited and inconsistent. The present cross-sectional study investigated this issue using baseline data from the Aidai Cohort Study.MethodsStudy subjects were 2012 Japanese men and women aged 34−88 years. Right and left CIMT were measured at the common carotid artery using an automated carotid ultrasonography device. Maximum CIMT was defined as the largest CIMT value in either the left or right common carotid artery. Carotid wall thickening was defined as a maximum CIMT value > 1.0 mm.ResultsThe prevalence of carotid wall thickening was 13.0%. In participants under 60 years of age (n = 703) and in those aged 60 to 69 years (n = 837), neither education nor household income was associated with carotid wall thickening or with maximum CIMT. Among those aged 70 years or older (n = 472), however, higher educational level, but not household income, was independently related to a lower prevalence of carotid wall thickening: the multivariate-adjusted odds ratio for high vs. low educational level was 0.43 (95% confidence interval 0.21−0.83, p for trend = 0.01). A significant inverse association was observed between education, but not household income, and maximum CIMT (p for trend = 0.006).ConclusionsHigher educational level may be associated with a lower prevalence of carotid wall thickening and a decrease in maximum CIMT only in participants aged 70 years or older.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N29c5f74cdabd4e10b27c77e6b8f6b992
27 Ncb9aa15c89e9494597aa5d438d41bfe4
28 sg:journal.1115673
29 schema:keywords Ainan
30 CIMT values
31 Japan
32 Japanese men
33 MethodsStudy subjects
34 ResultsThe prevalence
35 age
36 artery
37 association
38 baseline data
39 carotid artery
40 carotid intima-media thickness
41 carotid wall thickening
42 cohort study
43 common carotid artery
44 cross-sectional study
45 data
46 decrease
47 devices
48 education
49 educational level
50 evidence
51 higher educational level
52 household income
53 income
54 intima-media thickness
55 inverse association
56 issues
57 levels
58 low educational level
59 low prevalence
60 maximum cIMT value
61 maximum carotid intima-media thickness
62 men
63 multivariate-adjusted odds ratio
64 odds ratio
65 participants
66 present cross-sectional study
67 prevalence
68 ratio
69 relationship
70 right common carotid artery
71 significant inverse association
72 study
73 subjects
74 thickening
75 thickness
76 ultrasonography device
77 values
78 wall thickening
79 women
80 years
81 years of age
82 schema:name Education and household income and carotid intima-media thickness in Japan: baseline data from the Aidai Cohort Study in Yawatahama, Uchiko, Seiyo, and Ainan
83 schema:pagination 88
84 schema:productId N66414272cb5646c88cc0c6984f51785f
85 Naaca2d1dc9da47a0b6b580f52041afb4
86 Ne9a422c495244ba0b1259413eab03a9e
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141009666
88 https://doi.org/10.1186/s12199-021-01011-6
89 schema:sdDatePublished 2022-12-01T06:43
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N0ad5cec703324fb6b57890a2e6e815f7
92 schema:url https://doi.org/10.1186/s12199-021-01011-6
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0930ed89e3b84aabbc2646b2fd774556 rdf:first sg:person.01076514272.21
97 rdf:rest N25e893a762914a4f81bc76084c2abdf8
98 N0ad5cec703324fb6b57890a2e6e815f7 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N14eef9c8cb7840499f0165e8d566fe50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Prevalence
102 rdf:type schema:DefinedTerm
103 N1a537a4801ee42fc8874b6ef28f42ff2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Cross-Sectional Studies
105 rdf:type schema:DefinedTerm
106 N22dfcdaa9a2d46e19ea15be14c32fb37 rdf:first sg:person.012317637353.46
107 rdf:rest N62ded20dfe6b4968bb38f57c827a8d3c
108 N25e893a762914a4f81bc76084c2abdf8 rdf:first sg:person.016660012741.36
109 rdf:rest N90bb6d91576441428a9bfd18a97fbe08
110 N27070b4fd4bf49cfb58906d6d9c11735 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Male
112 rdf:type schema:DefinedTerm
113 N29c5f74cdabd4e10b27c77e6b8f6b992 schema:volumeNumber 26
114 rdf:type schema:PublicationVolume
115 N323b93512f274743bfe70ff3c6c3d71d rdf:first sg:person.01355675713.21
116 rdf:rest N0930ed89e3b84aabbc2646b2fd774556
117 N32c298374d9f49bda22901b22eed41c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Carotid Intima-Media Thickness
119 rdf:type schema:DefinedTerm
120 N37cf57fc801d4639a468e6a99c8bc01e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Aged, 80 and over
122 rdf:type schema:DefinedTerm
123 N3f442ab910c84f8991cddd343349d6c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Odds Ratio
125 rdf:type schema:DefinedTerm
126 N62ded20dfe6b4968bb38f57c827a8d3c rdf:first sg:person.0642775411.75
127 rdf:rest N7111cd6720ff411583d0e999445221fa
128 N64f39a834933488e86b6f2af46ed8ff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Educational Status
130 rdf:type schema:DefinedTerm
131 N66414272cb5646c88cc0c6984f51785f schema:name dimensions_id
132 schema:value pub.1141009666
133 rdf:type schema:PropertyValue
134 N706085cb01724d8fa68d822a8cfb90e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Income
136 rdf:type schema:DefinedTerm
137 N7111cd6720ff411583d0e999445221fa rdf:first sg:person.0774663244.98
138 rdf:rest N8f7f248a88dc43b7b3070742a3b92c79
139 N72703285c64d42779d688a21baa8a069 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Humans
141 rdf:type schema:DefinedTerm
142 N8f7f248a88dc43b7b3070742a3b92c79 rdf:first sg:person.0607425152.67
143 rdf:rest N90a9f2fc6da0440ead5a33aa95c1579e
144 N90a9f2fc6da0440ead5a33aa95c1579e rdf:first sg:person.01305053622.93
145 rdf:rest rdf:nil
146 N90bb6d91576441428a9bfd18a97fbe08 rdf:first sg:person.07536513520.93
147 rdf:rest N22dfcdaa9a2d46e19ea15be14c32fb37
148 N9871a0305a6c4769baa55557872891b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Middle Aged
150 rdf:type schema:DefinedTerm
151 Naaca2d1dc9da47a0b6b580f52041afb4 schema:name pubmed_id
152 schema:value 34503448
153 rdf:type schema:PropertyValue
154 Nb666b2d27794488e9e503c128576039c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Aged
156 rdf:type schema:DefinedTerm
157 Nb914d08e050146209c785580260ff9f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Cohort Studies
159 rdf:type schema:DefinedTerm
160 Nbf4cb0e5f8a24827863d1bde367d7cfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Adult
162 rdf:type schema:DefinedTerm
163 Ncb9aa15c89e9494597aa5d438d41bfe4 schema:issueNumber 1
164 rdf:type schema:PublicationIssue
165 Ndef23b2c6fd541f8908509a3a7a5e87f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Female
167 rdf:type schema:DefinedTerm
168 Ne909d1c8ca9b47a49944e7a98f94af5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Japan
170 rdf:type schema:DefinedTerm
171 Ne9a422c495244ba0b1259413eab03a9e schema:name doi
172 schema:value 10.1186/s12199-021-01011-6
173 rdf:type schema:PropertyValue
174 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
175 schema:name Medical and Health Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
178 schema:name Public Health and Health Services
179 rdf:type schema:DefinedTerm
180 sg:grant.9201236 http://pending.schema.org/fundedItem sg:pub.10.1186/s12199-021-01011-6
181 rdf:type schema:MonetaryGrant
182 sg:grant.9673313 http://pending.schema.org/fundedItem sg:pub.10.1186/s12199-021-01011-6
183 rdf:type schema:MonetaryGrant
184 sg:journal.1115673 schema:issn 1342-078X
185 1347-4715
186 schema:name Environmental Health and Preventive Medicine
187 schema:publisher Springer Nature
188 rdf:type schema:Periodical
189 sg:person.01076514272.21 schema:affiliation grid-institutes:grid.255464.4
190 schema:familyName Tanaka
191 schema:givenName Keiko
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076514272.21
193 rdf:type schema:Person
194 sg:person.012317637353.46 schema:affiliation grid-institutes:grid.255464.4
195 schema:familyName Miyata
196 schema:givenName Toyohisa
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317637353.46
198 rdf:type schema:Person
199 sg:person.01305053622.93 schema:affiliation grid-institutes:grid.255464.4
200 schema:familyName Kawamoto
201 schema:givenName Ryuichi
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305053622.93
203 rdf:type schema:Person
204 sg:person.01355675713.21 schema:affiliation grid-institutes:grid.255464.4
205 schema:familyName Miyake
206 schema:givenName Yoshihiro
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355675713.21
208 rdf:type schema:Person
209 sg:person.016660012741.36 schema:affiliation grid-institutes:grid.459780.7
210 schema:familyName Senba
211 schema:givenName Hidenori
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016660012741.36
213 rdf:type schema:Person
214 sg:person.0607425152.67 schema:affiliation grid-institutes:grid.255464.4
215 schema:familyName Matsuura
216 schema:givenName Bunzo
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607425152.67
218 rdf:type schema:Person
219 sg:person.0642775411.75 schema:affiliation grid-institutes:grid.255464.4
220 schema:familyName Higaki
221 schema:givenName Takashi
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642775411.75
223 rdf:type schema:Person
224 sg:person.07536513520.93 schema:affiliation grid-institutes:None
225 schema:familyName Hasebe
226 schema:givenName Yasuko
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536513520.93
228 rdf:type schema:Person
229 sg:person.0774663244.98 schema:affiliation grid-institutes:grid.255464.4
230 schema:familyName Kimura
231 schema:givenName Eizen
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774663244.98
233 rdf:type schema:Person
234 sg:pub.10.1007/s10396-009-0238-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023456786
235 https://doi.org/10.1007/s10396-009-0238-y
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/s41440-020-0444-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1127508317
238 https://doi.org/10.1038/s41440-020-0444-y
239 rdf:type schema:CreativeWork
240 grid-institutes:None schema:alternateName Junpu Health Care Center, Matsuyama, Japan
241 schema:name Junpu Health Care Center, Matsuyama, Japan
242 rdf:type schema:Organization
243 grid-institutes:grid.255464.4 schema:alternateName Center for Data Science, Ehime University, Matsuyama, Japan
244 Department of Community Medicine, Ehime University Graduate School of Medicine, Toon, Japan
245 Department of Lifestyle-Related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Toon, Japan
246 Department of Medical Informatics, Ehime University Graduate School of Medicine, Toon, Japan
247 Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Toon, Japan
248 schema:name Center for Data Science, Ehime University, Matsuyama, Japan
249 Department of Community Medicine, Ehime University Graduate School of Medicine, Toon, Japan
250 Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Toon, Japan
251 Department of Lifestyle-Related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Toon, Japan
252 Department of Medical Informatics, Ehime University Graduate School of Medicine, Toon, Japan
253 Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Toon, Japan
254 Research Promotion Unit, Translation Research Center, Ehime University Hospital, Toon, Japan
255 rdf:type schema:Organization
256 grid-institutes:grid.459780.7 schema:alternateName Department of Internal Medicine, Matsuyama Shimin Hospital, Matsuyama, Japan
257 schema:name Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Toon, Japan
258 Department of Internal Medicine, Matsuyama Shimin Hospital, Matsuyama, Japan
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...