Ontology type: schema:ScholarlyArticle Open Access: True
2019-05-30
AUTHORSEduard Mikayelyan, Linda Grodd, Viachaslau Ksianzou, Daniel Wesner, Alexander I. Rodygin, Holger Schönherr, Yuriy N. Luponosov, Sergei A. Ponomarenko, Dimitri A. Ivanov, Ullrich Pietsch, Souren Grigorian
ABSTRACTA combination of in situ electrical and grazing-incidence X-ray diffraction (GIXD) is a powerful tool for studies of correlations between the microstructure and charge transport in thin organic films. The information provided by such experimental approach can help optimizing the performance of the films as active layers of organic electronic devices. In this work, such combination of techniques was used to investigate the phase transitions in vacuum-deposited thin films of a common organic semiconductor dihexyl-quarterthiophene (DH4T). A transition from the initial highly crystalline phase to a mesophase was detected upon heating, while only a partial backward transition was observed upon cooling to room temperature. In situ electrical conductivity measurements revealed the impact of both transitions on charge transport. This is partly accounted for by the fact that the initial crystalline phase is characterized by inclination of molecules in the plane perpendicular to the π-π stacking direction, whereas the mesophase is built of molecules tilted in the direction of π-π stacking. Importantly, in addition to the two phases of DH4T characteristic of the bulk, a third interfacial substrate-stabilized monolayer-type phase was observed. The existence of such interfacial structure can have important implications for the charge mobility, being especially favorable for lateral two-dimensional charge transport in the organic field-effect transistors geometry. More... »
PAGES185
http://scigraph.springernature.com/pub.10.1186/s11671-019-3009-8
DOIhttp://dx.doi.org/10.1186/s11671-019-3009-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1116097067
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/31147864
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Nanotechnology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany",
"id": "http://www.grid.ac/institutes/grid.5836.8",
"name": [
"Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany"
],
"type": "Organization"
},
"familyName": "Mikayelyan",
"givenName": "Eduard",
"id": "sg:person.01044051756.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044051756.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany",
"id": "http://www.grid.ac/institutes/grid.5836.8",
"name": [
"Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany"
],
"type": "Organization"
},
"familyName": "Grodd",
"givenName": "Linda",
"id": "sg:person.01241534474.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241534474.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Engineering and Natural Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany",
"id": "http://www.grid.ac/institutes/grid.438275.f",
"name": [
"Department of Engineering and Natural Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany"
],
"type": "Organization"
},
"familyName": "Ksianzou",
"givenName": "Viachaslau",
"id": "sg:person.012623515504.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623515504.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (C\u03bc), University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany",
"id": "http://www.grid.ac/institutes/grid.5836.8",
"name": [
"Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (C\u03bc), University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany"
],
"type": "Organization"
},
"familyName": "Wesner",
"givenName": "Daniel",
"id": "sg:person.01262273326.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262273326.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, 141700, Dolgoprudny, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.18763.3b",
"name": [
"Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie gory1, 119991, Moscow, Russian Federation",
"Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, 141700, Dolgoprudny, Russian Federation"
],
"type": "Organization"
},
"familyName": "Rodygin",
"givenName": "Alexander I.",
"id": "sg:person.07654231317.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07654231317.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (C\u03bc), University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany",
"id": "http://www.grid.ac/institutes/grid.5836.8",
"name": [
"Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (C\u03bc), University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany"
],
"type": "Organization"
},
"familyName": "Sch\u00f6nherr",
"givenName": "Holger",
"id": "sg:person.0701370563.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701370563.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya st. 70, 117393, Moscow, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.465299.5",
"name": [
"Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya st. 70, 117393, Moscow, Russian Federation"
],
"type": "Organization"
},
"familyName": "Luponosov",
"givenName": "Yuriy N.",
"id": "sg:person.010077354756.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077354756.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991, Moscow, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.14476.30",
"name": [
"Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya st. 70, 117393, Moscow, Russian Federation",
"Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991, Moscow, Russian Federation"
],
"type": "Organization"
},
"familyName": "Ponomarenko",
"givenName": "Sergei A.",
"id": "sg:person.011475560464.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475560464.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Moscow region, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.418949.9",
"name": [
"Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie gory1, 119991, Moscow, Russian Federation",
"Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, 141700, Dolgoprudny, Russian Federation",
"Institut de Sciences des Mat\u00e9riaux de Mulhouse (CNRS UMR 7361), 15 rue Jean Starcky, B.P 2488, 68057, Mulhouse, France",
"Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Moscow region, Russian Federation"
],
"type": "Organization"
},
"familyName": "Ivanov",
"givenName": "Dimitri A.",
"id": "sg:person.0774433721.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774433721.81"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany",
"id": "http://www.grid.ac/institutes/grid.5836.8",
"name": [
"Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany"
],
"type": "Organization"
},
"familyName": "Pietsch",
"givenName": "Ullrich",
"id": "sg:person.0660426534.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660426534.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Aix Marseille University, University of Toulon, CNRS, IM2NP, Campus de St-J\u00e9r\u00f4me, 13397, Marseille, France",
"id": "http://www.grid.ac/institutes/grid.496914.7",
"name": [
"Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany",
"Aix Marseille University, University of Toulon, CNRS, IM2NP, Campus de St-J\u00e9r\u00f4me, 13397, Marseille, France"
],
"type": "Organization"
},
"familyName": "Grigorian",
"givenName": "Souren",
"id": "sg:person.0700472174.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700472174.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nnano.2009.201",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046895369",
"https://doi.org/10.1038/nnano.2009.201"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-05-30",
"datePublishedReg": "2019-05-30",
"description": "A combination of in situ electrical and grazing-incidence X-ray diffraction (GIXD) is a powerful tool for studies of correlations between the microstructure and charge transport in thin organic films. The information provided by such experimental approach can help optimizing the performance of the films as active layers of organic electronic devices. In this work, such combination of techniques was used to investigate the phase transitions in vacuum-deposited thin films of a common organic semiconductor dihexyl-quarterthiophene (DH4T). A transition from the initial highly crystalline phase to a mesophase was detected upon heating, while only a partial backward transition was observed upon cooling to room temperature. In situ electrical conductivity measurements revealed the impact of both transitions on charge transport. This is partly accounted for by the fact that the initial crystalline phase is characterized by inclination of molecules in the plane perpendicular to the \u03c0-\u03c0 stacking direction, whereas the mesophase is built of molecules tilted in the direction of \u03c0-\u03c0 stacking. Importantly, in addition to the two phases of DH4T characteristic of the bulk, a third interfacial substrate-stabilized monolayer-type phase was observed. The existence of such interfacial structure can have important implications for the charge mobility, being especially favorable for lateral two-dimensional charge transport in the organic field-effect transistors geometry.",
"genre": "article",
"id": "sg:pub.10.1186/s11671-019-3009-8",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8027933",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1037280",
"issn": [
"1931-7573",
"1556-276X"
],
"name": "Nanoscale Research Letters",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "14"
}
],
"keywords": [
"phase transition",
"field-effect transistor geometry",
"grazing-incidence X-ray diffraction",
"two-dimensional charge transport",
"vacuum-deposited thin films",
"X-ray diffraction",
"charge transport",
"situ electrical conductivity measurements",
"crystalline phase",
"situ X-ray diffraction",
"organic electronic devices",
"transistor geometry",
"backward transitions",
"such interfacial structures",
"electrical conductivity measurements",
"active layer",
"electrical measurements",
"thin oligothiophene films",
"thin organic films",
"thin films",
"plane perpendicular",
"interfacial structure",
"electronic devices",
"oligothiophene films",
"T characteristics",
"initial crystalline phase",
"such experimental approaches",
"charge mobility",
"organic films",
"films",
"conductivity measurements",
"powerful tool",
"transition",
"geometry",
"diffraction",
"microstructure",
"study of correlations",
"phase",
"transport",
"existence",
"direction",
"perpendicular",
"heating",
"measurements",
"experimental approach",
"layer",
"devices",
"structure",
"such combinations",
"temperature",
"performance",
"bulk",
"approach",
"situ",
"\u03c0 stacking",
"technique",
"stacking",
"inclination",
"characteristics",
"combination",
"tool",
"work",
"mobility",
"mesophase",
"fact",
"formation",
"information",
"addition",
"Combined",
"correlation",
"impact",
"exploration",
"study",
"molecules",
"important implications",
"implications"
],
"name": "Phase Transitions and Formation of a Monolayer-Type Structure in Thin Oligothiophene Films: Exploration with a Combined In Situ X-ray Diffraction and Electrical Measurements",
"pagination": "185",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1116097067"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s11671-019-3009-8"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"31147864"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s11671-019-3009-8",
"https://app.dimensions.ai/details/publication/pub.1116097067"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_820.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s11671-019-3009-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-3009-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-3009-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-3009-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-3009-8'
This table displays all metadata directly associated to this object as RDF triples.
255 TRIPLES
21 PREDICATES
106 URIs
93 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/s11671-019-3009-8 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | ″ | anzsrc-for:10 |
6 | ″ | ″ | anzsrc-for:1007 |
7 | ″ | schema:author | Nb97a454616b04c718587f7f794886880 |
8 | ″ | schema:citation | sg:pub.10.1038/nnano.2009.201 |
9 | ″ | schema:datePublished | 2019-05-30 |
10 | ″ | schema:datePublishedReg | 2019-05-30 |
11 | ″ | schema:description | A combination of in situ electrical and grazing-incidence X-ray diffraction (GIXD) is a powerful tool for studies of correlations between the microstructure and charge transport in thin organic films. The information provided by such experimental approach can help optimizing the performance of the films as active layers of organic electronic devices. In this work, such combination of techniques was used to investigate the phase transitions in vacuum-deposited thin films of a common organic semiconductor dihexyl-quarterthiophene (DH4T). A transition from the initial highly crystalline phase to a mesophase was detected upon heating, while only a partial backward transition was observed upon cooling to room temperature. In situ electrical conductivity measurements revealed the impact of both transitions on charge transport. This is partly accounted for by the fact that the initial crystalline phase is characterized by inclination of molecules in the plane perpendicular to the π-π stacking direction, whereas the mesophase is built of molecules tilted in the direction of π-π stacking. Importantly, in addition to the two phases of DH4T characteristic of the bulk, a third interfacial substrate-stabilized monolayer-type phase was observed. The existence of such interfacial structure can have important implications for the charge mobility, being especially favorable for lateral two-dimensional charge transport in the organic field-effect transistors geometry. |
12 | ″ | schema:genre | article |
13 | ″ | schema:isAccessibleForFree | true |
14 | ″ | schema:isPartOf | N53874f99119e4471a62e5bb4fd217535 |
15 | ″ | ″ | Nee91d313983a4589b2b7f9498d77806b |
16 | ″ | ″ | sg:journal.1037280 |
17 | ″ | schema:keywords | Combined |
18 | ″ | ″ | T characteristics |
19 | ″ | ″ | X-ray diffraction |
20 | ″ | ″ | active layer |
21 | ″ | ″ | addition |
22 | ″ | ″ | approach |
23 | ″ | ″ | backward transitions |
24 | ″ | ″ | bulk |
25 | ″ | ″ | characteristics |
26 | ″ | ″ | charge mobility |
27 | ″ | ″ | charge transport |
28 | ″ | ″ | combination |
29 | ″ | ″ | conductivity measurements |
30 | ″ | ″ | correlation |
31 | ″ | ″ | crystalline phase |
32 | ″ | ″ | devices |
33 | ″ | ″ | diffraction |
34 | ″ | ″ | direction |
35 | ″ | ″ | electrical conductivity measurements |
36 | ″ | ″ | electrical measurements |
37 | ″ | ″ | electronic devices |
38 | ″ | ″ | existence |
39 | ″ | ″ | experimental approach |
40 | ″ | ″ | exploration |
41 | ″ | ″ | fact |
42 | ″ | ″ | field-effect transistor geometry |
43 | ″ | ″ | films |
44 | ″ | ″ | formation |
45 | ″ | ″ | geometry |
46 | ″ | ″ | grazing-incidence X-ray diffraction |
47 | ″ | ″ | heating |
48 | ″ | ″ | impact |
49 | ″ | ″ | implications |
50 | ″ | ″ | important implications |
51 | ″ | ″ | inclination |
52 | ″ | ″ | information |
53 | ″ | ″ | initial crystalline phase |
54 | ″ | ″ | interfacial structure |
55 | ″ | ″ | layer |
56 | ″ | ″ | measurements |
57 | ″ | ″ | mesophase |
58 | ″ | ″ | microstructure |
59 | ″ | ″ | mobility |
60 | ″ | ″ | molecules |
61 | ″ | ″ | oligothiophene films |
62 | ″ | ″ | organic electronic devices |
63 | ″ | ″ | organic films |
64 | ″ | ″ | performance |
65 | ″ | ″ | perpendicular |
66 | ″ | ″ | phase |
67 | ″ | ″ | phase transition |
68 | ″ | ″ | plane perpendicular |
69 | ″ | ″ | powerful tool |
70 | ″ | ″ | situ |
71 | ″ | ″ | situ X-ray diffraction |
72 | ″ | ″ | situ electrical conductivity measurements |
73 | ″ | ″ | stacking |
74 | ″ | ″ | structure |
75 | ″ | ″ | study |
76 | ″ | ″ | study of correlations |
77 | ″ | ″ | such combinations |
78 | ″ | ″ | such experimental approaches |
79 | ″ | ″ | such interfacial structures |
80 | ″ | ″ | technique |
81 | ″ | ″ | temperature |
82 | ″ | ″ | thin films |
83 | ″ | ″ | thin oligothiophene films |
84 | ″ | ″ | thin organic films |
85 | ″ | ″ | tool |
86 | ″ | ″ | transistor geometry |
87 | ″ | ″ | transition |
88 | ″ | ″ | transport |
89 | ″ | ″ | two-dimensional charge transport |
90 | ″ | ″ | vacuum-deposited thin films |
91 | ″ | ″ | work |
92 | ″ | ″ | π stacking |
93 | ″ | schema:name | Phase Transitions and Formation of a Monolayer-Type Structure in Thin Oligothiophene Films: Exploration with a Combined In Situ X-ray Diffraction and Electrical Measurements |
94 | ″ | schema:pagination | 185 |
95 | ″ | schema:productId | N40b86eb3433246d4a108614a5638ce8a |
96 | ″ | ″ | N4d458a9b3c3a48f3adeda9f4320d2a0b |
97 | ″ | ″ | N5f0ffa50b0e44f1ba42d768943ee73d6 |
98 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1116097067 |
99 | ″ | ″ | https://doi.org/10.1186/s11671-019-3009-8 |
100 | ″ | schema:sdDatePublished | 2022-08-04T17:06 |
101 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
102 | ″ | schema:sdPublisher | N83be033e01d24bab9c130c5e490dc3c1 |
103 | ″ | schema:url | https://doi.org/10.1186/s11671-019-3009-8 |
104 | ″ | sgo:license | sg:explorer/license/ |
105 | ″ | sgo:sdDataset | articles |
106 | ″ | rdf:type | schema:ScholarlyArticle |
107 | N3c750a551033487c9baacbcc38589276 | rdf:first | sg:person.010077354756.67 |
108 | ″ | rdf:rest | N6e3f7db3ac6d4d17ab3e9e6ed3180034 |
109 | N40b86eb3433246d4a108614a5638ce8a | schema:name | dimensions_id |
110 | ″ | schema:value | pub.1116097067 |
111 | ″ | rdf:type | schema:PropertyValue |
112 | N41b16d4f7c1d4577a04a4e86afe7bb08 | rdf:first | sg:person.012623515504.18 |
113 | ″ | rdf:rest | Nb91621e98b2c4f9aac5903e6b30bf57e |
114 | N496ae2eae47a4fdd9d1feecb9d9a7b9e | rdf:first | sg:person.0701370563.35 |
115 | ″ | rdf:rest | N3c750a551033487c9baacbcc38589276 |
116 | N4d458a9b3c3a48f3adeda9f4320d2a0b | schema:name | doi |
117 | ″ | schema:value | 10.1186/s11671-019-3009-8 |
118 | ″ | rdf:type | schema:PropertyValue |
119 | N53874f99119e4471a62e5bb4fd217535 | schema:volumeNumber | 14 |
120 | ″ | rdf:type | schema:PublicationVolume |
121 | N5f0ffa50b0e44f1ba42d768943ee73d6 | schema:name | pubmed_id |
122 | ″ | schema:value | 31147864 |
123 | ″ | rdf:type | schema:PropertyValue |
124 | N66359b6e46e942e58644b3561613f023 | rdf:first | sg:person.0774433721.81 |
125 | ″ | rdf:rest | Nf7ed6449dfe04fbaad43fa8e3abea984 |
126 | N6c933f5a6c96415aa060b71c282b5846 | rdf:first | sg:person.01241534474.94 |
127 | ″ | rdf:rest | N41b16d4f7c1d4577a04a4e86afe7bb08 |
128 | N6e3f7db3ac6d4d17ab3e9e6ed3180034 | rdf:first | sg:person.011475560464.72 |
129 | ″ | rdf:rest | N66359b6e46e942e58644b3561613f023 |
130 | N7c41c5f0ba5b4eb795899f625d32df21 | rdf:first | sg:person.0700472174.23 |
131 | ″ | rdf:rest | rdf:nil |
132 | N83be033e01d24bab9c130c5e490dc3c1 | schema:name | Springer Nature - SN SciGraph project |
133 | ″ | rdf:type | schema:Organization |
134 | Nb91621e98b2c4f9aac5903e6b30bf57e | rdf:first | sg:person.01262273326.85 |
135 | ″ | rdf:rest | Nf3c48f5cdb04465fbc0d0543b6d9e927 |
136 | Nb97a454616b04c718587f7f794886880 | rdf:first | sg:person.01044051756.03 |
137 | ″ | rdf:rest | N6c933f5a6c96415aa060b71c282b5846 |
138 | Nee91d313983a4589b2b7f9498d77806b | schema:issueNumber | 1 |
139 | ″ | rdf:type | schema:PublicationIssue |
140 | Nf3c48f5cdb04465fbc0d0543b6d9e927 | rdf:first | sg:person.07654231317.94 |
141 | ″ | rdf:rest | N496ae2eae47a4fdd9d1feecb9d9a7b9e |
142 | Nf7ed6449dfe04fbaad43fa8e3abea984 | rdf:first | sg:person.0660426534.35 |
143 | ″ | rdf:rest | N7c41c5f0ba5b4eb795899f625d32df21 |
144 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
145 | ″ | schema:name | Physical Sciences |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
148 | ″ | schema:name | Condensed Matter Physics |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
151 | ″ | schema:name | Engineering |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
154 | ″ | schema:name | Materials Engineering |
155 | ″ | rdf:type | schema:DefinedTerm |
156 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
157 | ″ | schema:name | Technology |
158 | ″ | rdf:type | schema:DefinedTerm |
159 | anzsrc-for:1007 | schema:inDefinedTermSet | anzsrc-for: |
160 | ″ | schema:name | Nanotechnology |
161 | ″ | rdf:type | schema:DefinedTerm |
162 | sg:grant.8027933 | http://pending.schema.org/fundedItem | sg:pub.10.1186/s11671-019-3009-8 |
163 | ″ | rdf:type | schema:MonetaryGrant |
164 | sg:journal.1037280 | schema:issn | 1556-276X |
165 | ″ | ″ | 1931-7573 |
166 | ″ | schema:name | Nanoscale Research Letters |
167 | ″ | schema:publisher | Springer Nature |
168 | ″ | rdf:type | schema:Periodical |
169 | sg:person.010077354756.67 | schema:affiliation | grid-institutes:grid.465299.5 |
170 | ″ | schema:familyName | Luponosov |
171 | ″ | schema:givenName | Yuriy N. |
172 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077354756.67 |
173 | ″ | rdf:type | schema:Person |
174 | sg:person.01044051756.03 | schema:affiliation | grid-institutes:grid.5836.8 |
175 | ″ | schema:familyName | Mikayelyan |
176 | ″ | schema:givenName | Eduard |
177 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044051756.03 |
178 | ″ | rdf:type | schema:Person |
179 | sg:person.011475560464.72 | schema:affiliation | grid-institutes:grid.14476.30 |
180 | ″ | schema:familyName | Ponomarenko |
181 | ″ | schema:givenName | Sergei A. |
182 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475560464.72 |
183 | ″ | rdf:type | schema:Person |
184 | sg:person.01241534474.94 | schema:affiliation | grid-institutes:grid.5836.8 |
185 | ″ | schema:familyName | Grodd |
186 | ″ | schema:givenName | Linda |
187 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241534474.94 |
188 | ″ | rdf:type | schema:Person |
189 | sg:person.01262273326.85 | schema:affiliation | grid-institutes:grid.5836.8 |
190 | ″ | schema:familyName | Wesner |
191 | ″ | schema:givenName | Daniel |
192 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262273326.85 |
193 | ″ | rdf:type | schema:Person |
194 | sg:person.012623515504.18 | schema:affiliation | grid-institutes:grid.438275.f |
195 | ″ | schema:familyName | Ksianzou |
196 | ″ | schema:givenName | Viachaslau |
197 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623515504.18 |
198 | ″ | rdf:type | schema:Person |
199 | sg:person.0660426534.35 | schema:affiliation | grid-institutes:grid.5836.8 |
200 | ″ | schema:familyName | Pietsch |
201 | ″ | schema:givenName | Ullrich |
202 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660426534.35 |
203 | ″ | rdf:type | schema:Person |
204 | sg:person.0700472174.23 | schema:affiliation | grid-institutes:grid.496914.7 |
205 | ″ | schema:familyName | Grigorian |
206 | ″ | schema:givenName | Souren |
207 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700472174.23 |
208 | ″ | rdf:type | schema:Person |
209 | sg:person.0701370563.35 | schema:affiliation | grid-institutes:grid.5836.8 |
210 | ″ | schema:familyName | Schönherr |
211 | ″ | schema:givenName | Holger |
212 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701370563.35 |
213 | ″ | rdf:type | schema:Person |
214 | sg:person.07654231317.94 | schema:affiliation | grid-institutes:grid.18763.3b |
215 | ″ | schema:familyName | Rodygin |
216 | ″ | schema:givenName | Alexander I. |
217 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07654231317.94 |
218 | ″ | rdf:type | schema:Person |
219 | sg:person.0774433721.81 | schema:affiliation | grid-institutes:grid.418949.9 |
220 | ″ | schema:familyName | Ivanov |
221 | ″ | schema:givenName | Dimitri A. |
222 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774433721.81 |
223 | ″ | rdf:type | schema:Person |
224 | sg:pub.10.1038/nnano.2009.201 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046895369 |
225 | ″ | ″ | https://doi.org/10.1038/nnano.2009.201 |
226 | ″ | rdf:type | schema:CreativeWork |
227 | grid-institutes:grid.14476.30 | schema:alternateName | Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991, Moscow, Russian Federation |
228 | ″ | schema:name | Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991, Moscow, Russian Federation |
229 | ″ | ″ | Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya st. 70, 117393, Moscow, Russian Federation |
230 | ″ | rdf:type | schema:Organization |
231 | grid-institutes:grid.18763.3b | schema:alternateName | Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, 141700, Dolgoprudny, Russian Federation |
232 | ″ | schema:name | Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie gory1, 119991, Moscow, Russian Federation |
233 | ″ | ″ | Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, 141700, Dolgoprudny, Russian Federation |
234 | ″ | rdf:type | schema:Organization |
235 | grid-institutes:grid.418949.9 | schema:alternateName | Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Moscow region, Russian Federation |
236 | ″ | schema:name | Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie gory1, 119991, Moscow, Russian Federation |
237 | ″ | ″ | Institut de Sciences des Matériaux de Mulhouse (CNRS UMR 7361), 15 rue Jean Starcky, B.P 2488, 68057, Mulhouse, France |
238 | ″ | ″ | Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Moscow region, Russian Federation |
239 | ″ | ″ | Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, 141700, Dolgoprudny, Russian Federation |
240 | ″ | rdf:type | schema:Organization |
241 | grid-institutes:grid.438275.f | schema:alternateName | Department of Engineering and Natural Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany |
242 | ″ | schema:name | Department of Engineering and Natural Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany |
243 | ″ | rdf:type | schema:Organization |
244 | grid-institutes:grid.465299.5 | schema:alternateName | Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya st. 70, 117393, Moscow, Russian Federation |
245 | ″ | schema:name | Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya st. 70, 117393, Moscow, Russian Federation |
246 | ″ | rdf:type | schema:Organization |
247 | grid-institutes:grid.496914.7 | schema:alternateName | Aix Marseille University, University of Toulon, CNRS, IM2NP, Campus de St-Jérôme, 13397, Marseille, France |
248 | ″ | schema:name | Aix Marseille University, University of Toulon, CNRS, IM2NP, Campus de St-Jérôme, 13397, Marseille, France |
249 | ″ | ″ | Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany |
250 | ″ | rdf:type | schema:Organization |
251 | grid-institutes:grid.5836.8 | schema:alternateName | Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany |
252 | ″ | ″ | Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany |
253 | ″ | schema:name | Department of Physics, University of Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany |
254 | ″ | ″ | Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany |
255 | ″ | rdf:type | schema:Organization |