Atomic Layer Deposited Hf0.5Zr0.5O2-based Flexible Memristor with Short/Long-Term Synaptic Plasticity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Tian-Yu Wang, Jia-Lin Meng, Zhen-Yu He, Lin Chen, Hao Zhu, Qing-Qing Sun, Shi-Jin Ding, David Wei Zhang

ABSTRACT

Artificial synapses are the fundamental of building a neuron network for neuromorphic computing to overcome the bottleneck of the von Neumann system. Based on a low-temperature atomic layer deposition process, a flexible electrical synapse was proposed and showed bipolar resistive switching characteristics. With the formation and rupture of ions conductive filaments path, the conductance was modulated gradually. Under a series of pre-synaptic spikes, the device successfully emulated remarkable short-term plasticity, long-term plasticity, and forgetting behaviors. Therefore, memory and learning ability were integrated to the single flexible memristor, which are promising for the next-generation of artificial neuromorphic computing systems. More... »

PAGES

102

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s11671-019-2933-y

DOI

http://dx.doi.org/10.1186/s11671-019-2933-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112780570

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30877593


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Tian-Yu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), and School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Jia-Lin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Zhen-Yu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Lin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Hao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Qing-Qing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Shi-Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "David Wei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature03010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001436345", 
          "https://doi.org/10.1038/nature03010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001436345", 
          "https://doi.org/10.1038/nature03010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011691222", 
          "https://doi.org/10.1038/ncomms3676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201604310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013051311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201503575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015137925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aelm.201600090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026563606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201600893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046363625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2012.2184544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061594841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s11671-017-1847-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074190972", 
          "https://doi.org/10.1186/s11671-017-1847-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s11671-017-1847-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074190972", 
          "https://doi.org/10.1186/s11671-017-1847-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083850903", 
          "https://doi.org/10.1038/nmat4856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b07894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083853375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201700906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085216693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085395198", 
          "https://doi.org/10.1038/ncomms15199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/led.2017.2698083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085483315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201700933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085721551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201701193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090276465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/led.2017.2722463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090511654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00803-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091963211", 
          "https://doi.org/10.1038/s41467-017-00803-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41928-017-0002-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093128557", 
          "https://doi.org/10.1038/s41928-017-0002-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b08331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100561375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b08331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100561375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c8nr00222c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101130724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201800079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101337423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201706395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101533937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.8b05036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104431222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5027776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105348788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c8nr04734k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105766759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201803728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106124225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.8b16841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107394068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201804397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107490431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201806037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107663005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aelm.201800373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108030613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aelm.201800373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108030613"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Artificial synapses are the fundamental of building a neuron network for neuromorphic computing to overcome the bottleneck of the von Neumann system. Based on a low-temperature atomic layer deposition process, a flexible electrical synapse was proposed and showed bipolar resistive switching characteristics. With the formation and rupture of ions conductive filaments path, the conductance was modulated gradually. Under a series of pre-synaptic spikes, the device successfully emulated remarkable short-term plasticity, long-term plasticity, and forgetting behaviors. Therefore, memory and learning ability were integrated to the single flexible memristor, which are promising for the next-generation of artificial neuromorphic computing systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s11671-019-2933-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037280", 
        "issn": [
          "1931-7573", 
          "1556-276X"
        ], 
        "name": "Nanoscale Research Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Atomic Layer Deposited Hf0.5Zr0.5O2-based Flexible Memristor with Short/Long-Term Synaptic Plasticity", 
    "pagination": "102", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s11671-019-2933-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dfd691cae4fcb76fabdadfcf6c0b378c7d9ae4f121b50d229df6682af81e367f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112780570"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101279750"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30877593"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s11671-019-2933-y", 
      "https://app.dimensions.ai/details/publication/pub.1112780570"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91441_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs11671-019-2933-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-2933-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-2933-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-2933-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-2933-y'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s11671-019-2933-y schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N0120e4c8cbef4763b73d57c18a6dbdec
4 schema:citation sg:pub.10.1038/nature03010
5 sg:pub.10.1038/ncomms15199
6 sg:pub.10.1038/ncomms3676
7 sg:pub.10.1038/nmat4856
8 sg:pub.10.1038/s41467-017-00803-1
9 sg:pub.10.1038/s41928-017-0002-z
10 sg:pub.10.1186/s11671-017-1847-9
11 https://doi.org/10.1002/adfm.201803728
12 https://doi.org/10.1002/adfm.201804397
13 https://doi.org/10.1002/adfm.201806037
14 https://doi.org/10.1002/adma.201503575
15 https://doi.org/10.1002/adma.201604310
16 https://doi.org/10.1002/adma.201700906
17 https://doi.org/10.1002/adma.201706395
18 https://doi.org/10.1002/aelm.201600090
19 https://doi.org/10.1002/aelm.201800373
20 https://doi.org/10.1002/smll.201600893
21 https://doi.org/10.1002/smll.201700933
22 https://doi.org/10.1002/smll.201701193
23 https://doi.org/10.1002/smll.201800079
24 https://doi.org/10.1021/acsami.8b05036
25 https://doi.org/10.1021/acsami.8b16841
26 https://doi.org/10.1021/acsnano.6b07894
27 https://doi.org/10.1021/acsnano.7b08331
28 https://doi.org/10.1039/c8nr00222c
29 https://doi.org/10.1039/c8nr04734k
30 https://doi.org/10.1063/1.5027776
31 https://doi.org/10.1109/led.2017.2698083
32 https://doi.org/10.1109/led.2017.2722463
33 https://doi.org/10.1109/ted.2012.2184544
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description Artificial synapses are the fundamental of building a neuron network for neuromorphic computing to overcome the bottleneck of the von Neumann system. Based on a low-temperature atomic layer deposition process, a flexible electrical synapse was proposed and showed bipolar resistive switching characteristics. With the formation and rupture of ions conductive filaments path, the conductance was modulated gradually. Under a series of pre-synaptic spikes, the device successfully emulated remarkable short-term plasticity, long-term plasticity, and forgetting behaviors. Therefore, memory and learning ability were integrated to the single flexible memristor, which are promising for the next-generation of artificial neuromorphic computing systems.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N1d323ecdc58947d1805745270027e793
41 N89905bceec20498cb046ae23b002d84e
42 sg:journal.1037280
43 schema:name Atomic Layer Deposited Hf0.5Zr0.5O2-based Flexible Memristor with Short/Long-Term Synaptic Plasticity
44 schema:pagination 102
45 schema:productId N06dcb1ca7c704cd2b1eb07711d4633f7
46 N111c3bea2ddb451f95a705dc9eb5077a
47 N221cad2dc72b4e1583d4d998013a44fe
48 N7e9d193c8c714b8bb5b4e9a486026442
49 Nbb1b31fc7b054b42ac7cbf240942fa70
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112780570
51 https://doi.org/10.1186/s11671-019-2933-y
52 schema:sdDatePublished 2019-04-15T09:00
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N3345cbdd1b6f4018aa0f1c33676e9a8c
55 schema:url https://link.springer.com/10.1186%2Fs11671-019-2933-y
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0120e4c8cbef4763b73d57c18a6dbdec rdf:first N8b79fba698dc4f3fa1d1f20b657d5975
60 rdf:rest Ndffae0fbf2cc48538d0ea36f0b2fcaac
61 N06dcb1ca7c704cd2b1eb07711d4633f7 schema:name readcube_id
62 schema:value dfd691cae4fcb76fabdadfcf6c0b378c7d9ae4f121b50d229df6682af81e367f
63 rdf:type schema:PropertyValue
64 N111c3bea2ddb451f95a705dc9eb5077a schema:name nlm_unique_id
65 schema:value 101279750
66 rdf:type schema:PropertyValue
67 N1c21706d416346688ad81707791f0e19 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
68 schema:familyName Chen
69 schema:givenName Lin
70 rdf:type schema:Person
71 N1d323ecdc58947d1805745270027e793 schema:volumeNumber 14
72 rdf:type schema:PublicationVolume
73 N221cad2dc72b4e1583d4d998013a44fe schema:name doi
74 schema:value 10.1186/s11671-019-2933-y
75 rdf:type schema:PropertyValue
76 N28c120c2a49f4a38bc62fac9d365f6a1 rdf:first N1c21706d416346688ad81707791f0e19
77 rdf:rest Nf281863225cf49b7acb5f115d4e13ced
78 N2b0dba14af4643f0aaec8fade260df0a rdf:first Ndf1a8b9fd1c543cfb13c52b423b3d1ba
79 rdf:rest rdf:nil
80 N3326123b488e43a79cf6302f9a9c1710 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
81 schema:familyName Ding
82 schema:givenName Shi-Jin
83 rdf:type schema:Person
84 N3345cbdd1b6f4018aa0f1c33676e9a8c schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N34b60d072c3d4b92ac0156874537aedf schema:affiliation https://www.grid.ac/institutes/grid.8547.e
87 schema:familyName Sun
88 schema:givenName Qing-Qing
89 rdf:type schema:Person
90 N4dd1f68b6d884cbeb675446c6c4fb5fd schema:affiliation https://www.grid.ac/institutes/grid.33763.32
91 schema:familyName Meng
92 schema:givenName Jia-Lin
93 rdf:type schema:Person
94 N53613de65c1c465bb2087e9417490647 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
95 schema:familyName He
96 schema:givenName Zhen-Yu
97 rdf:type schema:Person
98 N5540978c72b6406a8d63fa3b483c2201 rdf:first N34b60d072c3d4b92ac0156874537aedf
99 rdf:rest N5a205161c68448b1bff721281ba70c9b
100 N5a205161c68448b1bff721281ba70c9b rdf:first N3326123b488e43a79cf6302f9a9c1710
101 rdf:rest N2b0dba14af4643f0aaec8fade260df0a
102 N7e9d193c8c714b8bb5b4e9a486026442 schema:name dimensions_id
103 schema:value pub.1112780570
104 rdf:type schema:PropertyValue
105 N89905bceec20498cb046ae23b002d84e schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 N8b79fba698dc4f3fa1d1f20b657d5975 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
108 schema:familyName Wang
109 schema:givenName Tian-Yu
110 rdf:type schema:Person
111 Na5fc783a7384416e97e597d4731a3ecd rdf:first N53613de65c1c465bb2087e9417490647
112 rdf:rest N28c120c2a49f4a38bc62fac9d365f6a1
113 Nbb1b31fc7b054b42ac7cbf240942fa70 schema:name pubmed_id
114 schema:value 30877593
115 rdf:type schema:PropertyValue
116 Nc008caa7ccf745c3a94683b8ce7429e3 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
117 schema:familyName Zhu
118 schema:givenName Hao
119 rdf:type schema:Person
120 Ndf1a8b9fd1c543cfb13c52b423b3d1ba schema:affiliation https://www.grid.ac/institutes/grid.8547.e
121 schema:familyName Zhang
122 schema:givenName David Wei
123 rdf:type schema:Person
124 Ndffae0fbf2cc48538d0ea36f0b2fcaac rdf:first N4dd1f68b6d884cbeb675446c6c4fb5fd
125 rdf:rest Na5fc783a7384416e97e597d4731a3ecd
126 Nf281863225cf49b7acb5f115d4e13ced rdf:first Nc008caa7ccf745c3a94683b8ce7429e3
127 rdf:rest N5540978c72b6406a8d63fa3b483c2201
128 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
129 schema:name Medical and Health Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
132 schema:name Neurosciences
133 rdf:type schema:DefinedTerm
134 sg:journal.1037280 schema:issn 1556-276X
135 1931-7573
136 schema:name Nanoscale Research Letters
137 rdf:type schema:Periodical
138 sg:pub.10.1038/nature03010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001436345
139 https://doi.org/10.1038/nature03010
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/ncomms15199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085395198
142 https://doi.org/10.1038/ncomms15199
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ncomms3676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011691222
145 https://doi.org/10.1038/ncomms3676
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nmat4856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083850903
148 https://doi.org/10.1038/nmat4856
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/s41467-017-00803-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091963211
151 https://doi.org/10.1038/s41467-017-00803-1
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/s41928-017-0002-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1093128557
154 https://doi.org/10.1038/s41928-017-0002-z
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/s11671-017-1847-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074190972
157 https://doi.org/10.1186/s11671-017-1847-9
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/adfm.201803728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106124225
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/adfm.201804397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107490431
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/adfm.201806037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107663005
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/adma.201503575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015137925
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/adma.201604310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013051311
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/adma.201700906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085216693
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/adma.201706395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101533937
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/aelm.201600090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026563606
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/aelm.201800373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108030613
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/smll.201600893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046363625
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/smll.201700933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085721551
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/smll.201701193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090276465
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/smll.201800079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101337423
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/acsami.8b05036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104431222
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/acsami.8b16841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107394068
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/acsnano.6b07894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083853375
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/acsnano.7b08331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100561375
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1039/c8nr00222c schema:sameAs https://app.dimensions.ai/details/publication/pub.1101130724
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1039/c8nr04734k schema:sameAs https://app.dimensions.ai/details/publication/pub.1105766759
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.5027776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105348788
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/led.2017.2698083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085483315
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/led.2017.2722463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090511654
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/ted.2012.2184544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061594841
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
206 schema:name Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), and School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
209 schema:name State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 200433, Shanghai, China
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...