A Novel Contrast Agent Based on Magnetic Nanoparticles for Cholesterol Detection as Alzheimer’s Disease Biomarker View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Tamara Fernández-Cabada, Milagros Ramos-Gómez

ABSTRACT

BACKGROUND: Considering the high incidence of Alzheimer's disease among the world population over the years, and the costs that the disease poses in sanitary and social terms to countries, it is necessary to develop non-invasive diagnostic tests that allow to detect early biomarkers of the disease. Within the early diagnosis methods, the development of contrast agents for magnetic resonance imaging becomes especially useful. Accumulating evidence suggests that cholesterol may play a role in the pathogenesis of Alzheimer's disease since abnormal deposits of cholesterol surrounding senile plaques have been described in animal transgenic models and patients with Alzheimer's disease. In vivo experiments have also shown that diet-induced hypercholesterolemia enhances intraneuronal accumulation of β-amyloid protein accompanied by microgliosis and accelerates β-amyloid deposition in brains. PRESENTATION OF THE HYPOTHESIS: In the present study, we propose for the first time the synthesis of a new nanoconjugate composed of magnetic nanoparticles bound to an anti-cholesterol antibody, to detect the abnormal deposits of cholesterol observed in senile plaques in Alzheimer's disease by magnetic resonance imaging. The nanoplatform could also reveal the decrease of cholesterol observed in neuronal plasmatic membranes associated with this pathology. TESTING THE HYPOTHESIS: Experimental design to test the hypothesis will be done first in vitro and then in ex vivo and in vivo studies in a second stage. IMPLICATIONS OF THE HYPOTHESIS: The designed nanoplatform could therefore detect cholesterol deposits at the cerebral level. The detection of this biomarker in areas coinciding with senile plaque accumulations could provide early information on the onset and progression of Alzheimer's disease. More... »

PAGES

36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s11671-019-2863-8

DOI

http://dx.doi.org/10.1186/s11671-019-2863-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111662008

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30684043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Centre for Biomedical Technology (CTB), Universidad Polit\u00e9cnica de Madrid, Campus de Montegancedo, Pozuelo de Alarc\u00f3n, 28223, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez-Cabada", 
        "givenName": "Tamara", 
        "id": "sg:person.01343552755.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343552755.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Centre for Biomedical Technology (CTB), Universidad Polit\u00e9cnica de Madrid, Campus de Montegancedo, Pozuelo de Alarc\u00f3n, 28223, Madrid, Spain", 
            "CIBER de Bioingenier\u00eda, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramos-G\u00f3mez", 
        "givenName": "Milagros", 
        "id": "sg:person.0621757321.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621757321.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.drudis.2006.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000537417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfj027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001162794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40618-015-0332-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003600064", 
          "https://doi.org/10.1007/s40618-015-0332-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep13489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004227254", 
          "https://doi.org/10.1038/srep13489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10611860410001701706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005805434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-8-449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007137179", 
          "https://doi.org/10.1186/1556-276x-8-449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1090585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009142388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nbd.2009.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011361036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-328x(02)00647-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011878953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-328x(02)00647-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011878953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012488611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0057097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017292809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-013-4993-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020921576", 
          "https://doi.org/10.1007/s10856-013-4993-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021991397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022334287", 
          "https://doi.org/10.1038/srep07930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/nen.0b013e318225038c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023997941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-015-0730-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025166954", 
          "https://doi.org/10.1007/s10237-015-0730-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-015-0730-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025166954", 
          "https://doi.org/10.1007/s10237-015-0730-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.emboj.7600938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026516213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.emboj.7600938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026516213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201001658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026634440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnen/60.8.778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027451085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jbn.2016.2193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028184799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfb.2016.08.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028534554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpharm.2016.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029521466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b907375b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030304017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b907375b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030304017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2006.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030815725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.21335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032241939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.02-0829com", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045319562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.200410090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045938879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ddrr.1114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046682355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ddrr.1114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046682355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1202-06.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047102131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11064-008-9673-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048239365", 
          "https://doi.org/10.1007/s11064-008-9673-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m001859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049314613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2010.02.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049569435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/ijbs.5115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050132422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1047403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051476561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201502227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052449292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi026173d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055196019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi026173d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055196019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/jnanor.31.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072056623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7nr00772h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085125405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1179069517733096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099597064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1179069517733096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099597064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbadis.2017.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099664825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbadis.2017.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099664825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acschemneuro.7b00260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100159373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acschemneuro.7b00260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100159373"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Considering the high incidence of Alzheimer's disease among the world population over the years, and the costs that the disease poses in sanitary and social terms to countries, it is necessary to develop non-invasive diagnostic tests that allow to detect early biomarkers of the disease. Within the early diagnosis methods, the development of contrast agents for magnetic resonance imaging becomes especially useful. Accumulating evidence suggests that cholesterol may play a role in the pathogenesis of Alzheimer's disease since abnormal deposits of cholesterol surrounding senile plaques have been described in animal transgenic models and patients with Alzheimer's disease. In vivo experiments have also shown that diet-induced hypercholesterolemia enhances intraneuronal accumulation of \u03b2-amyloid protein accompanied by microgliosis and accelerates \u03b2-amyloid deposition in brains.\nPRESENTATION OF THE HYPOTHESIS: In the present study, we propose for the first time the synthesis of a new nanoconjugate composed of magnetic nanoparticles bound to an anti-cholesterol antibody, to detect the abnormal deposits of cholesterol observed in senile plaques in Alzheimer's disease by magnetic resonance imaging. The nanoplatform could also reveal the decrease of cholesterol observed in neuronal plasmatic membranes associated with this pathology.\nTESTING THE HYPOTHESIS: Experimental design to test the hypothesis will be done first in vitro and then in ex vivo and in vivo studies in a second stage.\nIMPLICATIONS OF THE HYPOTHESIS: The designed nanoplatform could therefore detect cholesterol deposits at the cerebral level. The detection of this biomarker in areas coinciding with senile plaque accumulations could provide early information on the onset and progression of Alzheimer's disease.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s11671-019-2863-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037280", 
        "issn": [
          "1931-7573", 
          "1556-276X"
        ], 
        "name": "Nanoscale Research Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "A Novel Contrast Agent Based on Magnetic Nanoparticles for Cholesterol Detection as Alzheimer\u2019s Disease Biomarker", 
    "pagination": "36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bafb3a607321c7426891f4c730e77ea1366f84810e2033b6131175d81b6b1a88"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30684043"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101279750"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s11671-019-2863-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111662008"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s11671-019-2863-8", 
      "https://app.dimensions.ai/details/publication/pub.1111662008"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99839_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs11671-019-2863-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-2863-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-2863-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-2863-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s11671-019-2863-8'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s11671-019-2863-8 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nb799df65b4ba4534b323eced5912bf04
4 schema:citation sg:pub.10.1007/s10237-015-0730-9
5 sg:pub.10.1007/s10856-013-4993-3
6 sg:pub.10.1007/s11064-008-9673-1
7 sg:pub.10.1007/s40618-015-0332-5
8 sg:pub.10.1038/srep07930
9 sg:pub.10.1038/srep13489
10 sg:pub.10.1186/1556-276x-8-449
11 https://doi.org/10.1002/adfm.201001658
12 https://doi.org/10.1002/adma.201502227
13 https://doi.org/10.1002/ddrr.1114
14 https://doi.org/10.1002/jps.21335
15 https://doi.org/10.1002/mrm.10529
16 https://doi.org/10.1016/j.bbadis.2017.12.017
17 https://doi.org/10.1016/j.bbrc.2010.02.046
18 https://doi.org/10.1016/j.colsurfb.2016.08.059
19 https://doi.org/10.1016/j.drudis.2006.10.013
20 https://doi.org/10.1016/j.ijpharm.2016.01.043
21 https://doi.org/10.1016/j.nbd.2009.07.030
22 https://doi.org/10.1016/j.neurobiolaging.2006.12.018
23 https://doi.org/10.1016/j.neuroimage.2011.01.023
24 https://doi.org/10.1016/s0169-328x(02)00647-2
25 https://doi.org/10.1021/acschemneuro.7b00260
26 https://doi.org/10.1021/bi026173d
27 https://doi.org/10.1038/sj.emboj.7600938
28 https://doi.org/10.1039/b907375b
29 https://doi.org/10.1039/c7nr00772h
30 https://doi.org/10.1080/10611860410001701706
31 https://doi.org/10.1083/jcb.200410090
32 https://doi.org/10.1093/jnen/60.8.778
33 https://doi.org/10.1093/toxsci/kfj027
34 https://doi.org/10.1096/fj.02-0829com
35 https://doi.org/10.1097/nen.0b013e318225038c
36 https://doi.org/10.1101/gad.1047403
37 https://doi.org/10.1126/science.1090585
38 https://doi.org/10.1166/jbn.2016.2193
39 https://doi.org/10.1177/1179069517733096
40 https://doi.org/10.1194/jlr.m001859
41 https://doi.org/10.1371/journal.pone.0057097
42 https://doi.org/10.1523/jneurosci.1202-06.2006
43 https://doi.org/10.4028/www.scientific.net/jnanor.31.129
44 https://doi.org/10.7150/ijbs.5115
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description BACKGROUND: Considering the high incidence of Alzheimer's disease among the world population over the years, and the costs that the disease poses in sanitary and social terms to countries, it is necessary to develop non-invasive diagnostic tests that allow to detect early biomarkers of the disease. Within the early diagnosis methods, the development of contrast agents for magnetic resonance imaging becomes especially useful. Accumulating evidence suggests that cholesterol may play a role in the pathogenesis of Alzheimer's disease since abnormal deposits of cholesterol surrounding senile plaques have been described in animal transgenic models and patients with Alzheimer's disease. In vivo experiments have also shown that diet-induced hypercholesterolemia enhances intraneuronal accumulation of β-amyloid protein accompanied by microgliosis and accelerates β-amyloid deposition in brains. PRESENTATION OF THE HYPOTHESIS: In the present study, we propose for the first time the synthesis of a new nanoconjugate composed of magnetic nanoparticles bound to an anti-cholesterol antibody, to detect the abnormal deposits of cholesterol observed in senile plaques in Alzheimer's disease by magnetic resonance imaging. The nanoplatform could also reveal the decrease of cholesterol observed in neuronal plasmatic membranes associated with this pathology. TESTING THE HYPOTHESIS: Experimental design to test the hypothesis will be done first in vitro and then in ex vivo and in vivo studies in a second stage. IMPLICATIONS OF THE HYPOTHESIS: The designed nanoplatform could therefore detect cholesterol deposits at the cerebral level. The detection of this biomarker in areas coinciding with senile plaque accumulations could provide early information on the onset and progression of Alzheimer's disease.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N6cf8423f8e5a4fcb83a227da86bde0df
52 N98a2e5dd7e9643b6984f0592dd8d3c97
53 sg:journal.1037280
54 schema:name A Novel Contrast Agent Based on Magnetic Nanoparticles for Cholesterol Detection as Alzheimer’s Disease Biomarker
55 schema:pagination 36
56 schema:productId N4f7b778ee81047c7824689cadbce588b
57 N5a065269ee2e4757951b3c33c59099fd
58 N76fe993e35834695af10346fc77504e7
59 N866da196f4ad4d9985abc817cf5fb299
60 Na7b3d6b5d9544ac9b78d2d62b89d3693
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111662008
62 https://doi.org/10.1186/s11671-019-2863-8
63 schema:sdDatePublished 2019-04-11T09:40
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N5933930b6cf04e949e15c0ff843c22b0
66 schema:url https://link.springer.com/10.1186%2Fs11671-019-2863-8
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N4f7b778ee81047c7824689cadbce588b schema:name pubmed_id
71 schema:value 30684043
72 rdf:type schema:PropertyValue
73 N5933930b6cf04e949e15c0ff843c22b0 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N5a065269ee2e4757951b3c33c59099fd schema:name readcube_id
76 schema:value bafb3a607321c7426891f4c730e77ea1366f84810e2033b6131175d81b6b1a88
77 rdf:type schema:PropertyValue
78 N6cf8423f8e5a4fcb83a227da86bde0df schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 N76fe993e35834695af10346fc77504e7 schema:name dimensions_id
81 schema:value pub.1111662008
82 rdf:type schema:PropertyValue
83 N866da196f4ad4d9985abc817cf5fb299 schema:name nlm_unique_id
84 schema:value 101279750
85 rdf:type schema:PropertyValue
86 N98a2e5dd7e9643b6984f0592dd8d3c97 schema:volumeNumber 14
87 rdf:type schema:PublicationVolume
88 N99947864a8c548158d94a42b6d0fa217 rdf:first sg:person.0621757321.27
89 rdf:rest rdf:nil
90 Na7b3d6b5d9544ac9b78d2d62b89d3693 schema:name doi
91 schema:value 10.1186/s11671-019-2863-8
92 rdf:type schema:PropertyValue
93 Nb799df65b4ba4534b323eced5912bf04 rdf:first sg:person.01343552755.10
94 rdf:rest N99947864a8c548158d94a42b6d0fa217
95 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
96 schema:name Medical and Health Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
99 schema:name Neurosciences
100 rdf:type schema:DefinedTerm
101 sg:journal.1037280 schema:issn 1556-276X
102 1931-7573
103 schema:name Nanoscale Research Letters
104 rdf:type schema:Periodical
105 sg:person.01343552755.10 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
106 schema:familyName Fernández-Cabada
107 schema:givenName Tamara
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343552755.10
109 rdf:type schema:Person
110 sg:person.0621757321.27 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
111 schema:familyName Ramos-Gómez
112 schema:givenName Milagros
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621757321.27
114 rdf:type schema:Person
115 sg:pub.10.1007/s10237-015-0730-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025166954
116 https://doi.org/10.1007/s10237-015-0730-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10856-013-4993-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020921576
119 https://doi.org/10.1007/s10856-013-4993-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11064-008-9673-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048239365
122 https://doi.org/10.1007/s11064-008-9673-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s40618-015-0332-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003600064
125 https://doi.org/10.1007/s40618-015-0332-5
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/srep07930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022334287
128 https://doi.org/10.1038/srep07930
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/srep13489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004227254
131 https://doi.org/10.1038/srep13489
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1556-276x-8-449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007137179
134 https://doi.org/10.1186/1556-276x-8-449
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/adfm.201001658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026634440
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/adma.201502227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052449292
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/ddrr.1114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046682355
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/jps.21335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032241939
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/mrm.10529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021991397
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.bbadis.2017.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099664825
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.bbrc.2010.02.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049569435
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.colsurfb.2016.08.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028534554
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.drudis.2006.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000537417
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ijpharm.2016.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029521466
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.nbd.2009.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011361036
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.neurobiolaging.2006.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030815725
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.neuroimage.2011.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012488611
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0169-328x(02)00647-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011878953
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/acschemneuro.7b00260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100159373
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/bi026173d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055196019
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1038/sj.emboj.7600938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026516213
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1039/b907375b schema:sameAs https://app.dimensions.ai/details/publication/pub.1030304017
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1039/c7nr00772h schema:sameAs https://app.dimensions.ai/details/publication/pub.1085125405
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1080/10611860410001701706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005805434
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1083/jcb.200410090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045938879
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/jnen/60.8.778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027451085
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/toxsci/kfj027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001162794
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1096/fj.02-0829com schema:sameAs https://app.dimensions.ai/details/publication/pub.1045319562
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1097/nen.0b013e318225038c schema:sameAs https://app.dimensions.ai/details/publication/pub.1023997941
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1101/gad.1047403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051476561
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1090585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009142388
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1166/jbn.2016.2193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028184799
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1177/1179069517733096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099597064
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1194/jlr.m001859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049314613
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pone.0057097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017292809
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1523/jneurosci.1202-06.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047102131
199 rdf:type schema:CreativeWork
200 https://doi.org/10.4028/www.scientific.net/jnanor.31.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072056623
201 rdf:type schema:CreativeWork
202 https://doi.org/10.7150/ijbs.5115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050132422
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.413448.e schema:alternateName Instituto de Salud Carlos III
205 schema:name CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
206 Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
209 schema:name Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...