Ontology type: schema:ScholarlyArticle Open Access: True
2015-12-09
AUTHORSTatyana Rakitskaya, Alla Truba, Alim Ennan, Vitaliya Volkova
ABSTRACTSamples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL‑11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as СaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M–O–H bonds and stretching vibrations of M–O bonds (M–Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions. More... »
PAGES473
http://scigraph.springernature.com/pub.10.1186/s11671-015-1186-7
DOIhttp://dx.doi.org/10.1186/s11671-015-1186-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1004859848
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/26646686
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Nanotechnology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., 65082, Odessa, Ukraine",
"id": "http://www.grid.ac/institutes/grid.440557.7",
"name": [
"Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., 65082, Odessa, Ukraine"
],
"type": "Organization"
},
"familyName": "Rakitskaya",
"givenName": "Tatyana",
"id": "sg:person.010025245577.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010025245577.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physicochemical Institute of Environment and Human Protection, 3, Preobrazhenskaya St., 65082, Odessa, Ukraine",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., 65082, Odessa, Ukraine",
"Physicochemical Institute of Environment and Human Protection, 3, Preobrazhenskaya St., 65082, Odessa, Ukraine"
],
"type": "Organization"
},
"familyName": "Truba",
"givenName": "Alla",
"id": "sg:person.01011326413.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011326413.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physicochemical Institute of Environment and Human Protection, 3, Preobrazhenskaya St., 65082, Odessa, Ukraine",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Physicochemical Institute of Environment and Human Protection, 3, Preobrazhenskaya St., 65082, Odessa, Ukraine"
],
"type": "Organization"
},
"familyName": "Ennan",
"givenName": "Alim",
"id": "sg:person.07436657062.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436657062.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., 65082, Odessa, Ukraine",
"id": "http://www.grid.ac/institutes/grid.440557.7",
"name": [
"Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., 65082, Odessa, Ukraine"
],
"type": "Organization"
},
"familyName": "Volkova",
"givenName": "Vitaliya",
"id": "sg:person.011345462350.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011345462350.63"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s1070363213020205",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021102268",
"https://doi.org/10.1134/s1070363213020205"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-12-09",
"datePublishedReg": "2015-12-09",
"description": "Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL\u201111, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 \u00b0C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2\u03b8\u2009~\u200935\u00b0 characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as \u0421aF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68\u00a0nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M\u2013O\u2013H bonds and stretching vibrations of M\u2013O bonds (M\u2013Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO\u2009>\u2009SCWA-UONI\u2009>\u2009SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions.",
"genre": "article",
"id": "sg:pub.10.1186/s11671-015-1186-7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1037280",
"issn": [
"1931-7573",
"1556-276X"
],
"name": "Nanoscale Research Letters",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"keywords": [
"IR spectral investigations",
"X-ray phase analysis",
"IR spectroscopy",
"catalytic activity",
"H bonds",
"O bond",
"IR spectra",
"ozone decomposition",
"magnetite nanoparticles",
"water-soluble phase",
"spectral investigations",
"decomposition decreases",
"cubic spinel",
"iron oxide",
"alkali metals",
"water treatment",
"welding aerosols",
"chemical composition",
"active phase",
"deformation vibrations",
"phase composition",
"bonds",
"electrode",
"water-soluble fluoride",
"ScwA",
"phase analysis",
"such phases",
"catalyst",
"nanoparticles",
"spectroscopy",
"composition",
"chromate",
"aerosols",
"reaction",
"phase",
"spinel",
"oxide",
"metals",
"carbonate",
"fluoride",
"spectra",
"magnetite",
"samples",
"decomposition",
"solid components",
"modification",
"corresponding",
"manufacture",
"steel welding",
"vibration",
"activity",
"size",
"investigation",
"components",
"decrease",
"content",
"big difference",
"analysis",
"results",
"characteristics",
"study",
"welding",
"treatment",
"region",
"differences",
"reflex"
],
"name": "Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition",
"pagination": "473",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1004859848"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s11671-015-1186-7"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"26646686"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s11671-015-1186-7",
"https://app.dimensions.ai/details/publication/pub.1004859848"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:14",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_662.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s11671-015-1186-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s11671-015-1186-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s11671-015-1186-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s11671-015-1186-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s11671-015-1186-7'
This table displays all metadata directly associated to this object as RDF triples.
173 TRIPLES
22 PREDICATES
97 URIs
84 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/s11671-015-1186-7 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | ″ | anzsrc-for:10 |
6 | ″ | ″ | anzsrc-for:1007 |
7 | ″ | schema:author | N289af2d7cbb048029b4a7d34260760a9 |
8 | ″ | schema:citation | sg:pub.10.1134/s1070363213020205 |
9 | ″ | schema:datePublished | 2015-12-09 |
10 | ″ | schema:datePublishedReg | 2015-12-09 |
11 | ″ | schema:description | Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL‑11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as СaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M–O–H bonds and stretching vibrations of M–O bonds (M–Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | true |
15 | ″ | schema:isPartOf | N5045d13210dd42f1a0689f6b5d33c684 |
16 | ″ | ″ | Nd1fdf874d2a24660b22d0f99b2c88ede |
17 | ″ | ″ | sg:journal.1037280 |
18 | ″ | schema:keywords | H bonds |
19 | ″ | ″ | IR spectra |
20 | ″ | ″ | IR spectral investigations |
21 | ″ | ″ | IR spectroscopy |
22 | ″ | ″ | O bond |
23 | ″ | ″ | ScwA |
24 | ″ | ″ | X-ray phase analysis |
25 | ″ | ″ | active phase |
26 | ″ | ″ | activity |
27 | ″ | ″ | aerosols |
28 | ″ | ″ | alkali metals |
29 | ″ | ″ | analysis |
30 | ″ | ″ | big difference |
31 | ″ | ″ | bonds |
32 | ″ | ″ | carbonate |
33 | ″ | ″ | catalyst |
34 | ″ | ″ | catalytic activity |
35 | ″ | ″ | characteristics |
36 | ″ | ″ | chemical composition |
37 | ″ | ″ | chromate |
38 | ″ | ″ | components |
39 | ″ | ″ | composition |
40 | ″ | ″ | content |
41 | ″ | ″ | corresponding |
42 | ″ | ″ | cubic spinel |
43 | ″ | ″ | decomposition |
44 | ″ | ″ | decomposition decreases |
45 | ″ | ″ | decrease |
46 | ″ | ″ | deformation vibrations |
47 | ″ | ″ | differences |
48 | ″ | ″ | electrode |
49 | ″ | ″ | fluoride |
50 | ″ | ″ | investigation |
51 | ″ | ″ | iron oxide |
52 | ″ | ″ | magnetite |
53 | ″ | ″ | magnetite nanoparticles |
54 | ″ | ″ | manufacture |
55 | ″ | ″ | metals |
56 | ″ | ″ | modification |
57 | ″ | ″ | nanoparticles |
58 | ″ | ″ | oxide |
59 | ″ | ″ | ozone decomposition |
60 | ″ | ″ | phase |
61 | ″ | ″ | phase analysis |
62 | ″ | ″ | phase composition |
63 | ″ | ″ | reaction |
64 | ″ | ″ | reflex |
65 | ″ | ″ | region |
66 | ″ | ″ | results |
67 | ″ | ″ | samples |
68 | ″ | ″ | size |
69 | ″ | ″ | solid components |
70 | ″ | ″ | spectra |
71 | ″ | ″ | spectral investigations |
72 | ″ | ″ | spectroscopy |
73 | ″ | ″ | spinel |
74 | ″ | ″ | steel welding |
75 | ″ | ″ | study |
76 | ″ | ″ | such phases |
77 | ″ | ″ | treatment |
78 | ″ | ″ | vibration |
79 | ″ | ″ | water treatment |
80 | ″ | ″ | water-soluble fluoride |
81 | ″ | ″ | water-soluble phase |
82 | ″ | ″ | welding |
83 | ″ | ″ | welding aerosols |
84 | ″ | schema:name | Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition |
85 | ″ | schema:pagination | 473 |
86 | ″ | schema:productId | N104a9266f5b344eeb9b687c1f30523ec |
87 | ″ | ″ | N52ab667a52e84c008e1efbda13d75d9c |
88 | ″ | ″ | N752ff1f7a26d480d89e6f65277d5b27f |
89 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004859848 |
90 | ″ | ″ | https://doi.org/10.1186/s11671-015-1186-7 |
91 | ″ | schema:sdDatePublished | 2022-05-10T10:14 |
92 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
93 | ″ | schema:sdPublisher | Nea7e711f60f947068d50907350446eb3 |
94 | ″ | schema:url | https://doi.org/10.1186/s11671-015-1186-7 |
95 | ″ | sgo:license | sg:explorer/license/ |
96 | ″ | sgo:sdDataset | articles |
97 | ″ | rdf:type | schema:ScholarlyArticle |
98 | N104a9266f5b344eeb9b687c1f30523ec | schema:name | pubmed_id |
99 | ″ | schema:value | 26646686 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | N289af2d7cbb048029b4a7d34260760a9 | rdf:first | sg:person.010025245577.40 |
102 | ″ | rdf:rest | Na13c1bb810fd402a9c4e1d2d8a51ea5c |
103 | N5045d13210dd42f1a0689f6b5d33c684 | schema:volumeNumber | 10 |
104 | ″ | rdf:type | schema:PublicationVolume |
105 | N52ab667a52e84c008e1efbda13d75d9c | schema:name | dimensions_id |
106 | ″ | schema:value | pub.1004859848 |
107 | ″ | rdf:type | schema:PropertyValue |
108 | N72727b231efa45d38077d4bf0403970c | rdf:first | sg:person.07436657062.27 |
109 | ″ | rdf:rest | Ne9af19b799aa4f6e85b164bdb71d052e |
110 | N752ff1f7a26d480d89e6f65277d5b27f | schema:name | doi |
111 | ″ | schema:value | 10.1186/s11671-015-1186-7 |
112 | ″ | rdf:type | schema:PropertyValue |
113 | Na13c1bb810fd402a9c4e1d2d8a51ea5c | rdf:first | sg:person.01011326413.72 |
114 | ″ | rdf:rest | N72727b231efa45d38077d4bf0403970c |
115 | Nd1fdf874d2a24660b22d0f99b2c88ede | schema:issueNumber | 1 |
116 | ″ | rdf:type | schema:PublicationIssue |
117 | Ne9af19b799aa4f6e85b164bdb71d052e | rdf:first | sg:person.011345462350.63 |
118 | ″ | rdf:rest | rdf:nil |
119 | Nea7e711f60f947068d50907350446eb3 | schema:name | Springer Nature - SN SciGraph project |
120 | ″ | rdf:type | schema:Organization |
121 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Physical Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Condensed Matter Physics |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Engineering |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Materials Engineering |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
134 | ″ | schema:name | Technology |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | anzsrc-for:1007 | schema:inDefinedTermSet | anzsrc-for: |
137 | ″ | schema:name | Nanotechnology |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | sg:journal.1037280 | schema:issn | 1556-276X |
140 | ″ | ″ | 1931-7573 |
141 | ″ | schema:name | Nanoscale Research Letters |
142 | ″ | schema:publisher | Springer Nature |
143 | ″ | rdf:type | schema:Periodical |
144 | sg:person.010025245577.40 | schema:affiliation | grid-institutes:grid.440557.7 |
145 | ″ | schema:familyName | Rakitskaya |
146 | ″ | schema:givenName | Tatyana |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010025245577.40 |
148 | ″ | rdf:type | schema:Person |
149 | sg:person.01011326413.72 | schema:affiliation | grid-institutes:None |
150 | ″ | schema:familyName | Truba |
151 | ″ | schema:givenName | Alla |
152 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011326413.72 |
153 | ″ | rdf:type | schema:Person |
154 | sg:person.011345462350.63 | schema:affiliation | grid-institutes:grid.440557.7 |
155 | ″ | schema:familyName | Volkova |
156 | ″ | schema:givenName | Vitaliya |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011345462350.63 |
158 | ″ | rdf:type | schema:Person |
159 | sg:person.07436657062.27 | schema:affiliation | grid-institutes:None |
160 | ″ | schema:familyName | Ennan |
161 | ″ | schema:givenName | Alim |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436657062.27 |
163 | ″ | rdf:type | schema:Person |
164 | sg:pub.10.1134/s1070363213020205 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021102268 |
165 | ″ | ″ | https://doi.org/10.1134/s1070363213020205 |
166 | ″ | rdf:type | schema:CreativeWork |
167 | grid-institutes:None | schema:alternateName | Physicochemical Institute of Environment and Human Protection, 3, Preobrazhenskaya St., 65082, Odessa, Ukraine |
168 | ″ | schema:name | Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., 65082, Odessa, Ukraine |
169 | ″ | ″ | Physicochemical Institute of Environment and Human Protection, 3, Preobrazhenskaya St., 65082, Odessa, Ukraine |
170 | ″ | rdf:type | schema:Organization |
171 | grid-institutes:grid.440557.7 | schema:alternateName | Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., 65082, Odessa, Ukraine |
172 | ″ | schema:name | Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., 65082, Odessa, Ukraine |
173 | ″ | rdf:type | schema:Organization |