On-Machine Measurement of the Straightness and Tilt Errors of a Linear Slideway Using a New Four-Sensor Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Lei Zhao, Kai Cheng, Hui Ding, Liang Zhao

ABSTRACT

Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition. In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to different positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the effects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coefficient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the effects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors. More... »

PAGES

24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s10033-019-0338-6

DOI

http://dx.doi.org/10.1186/s10033-019-0338-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112831790


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Mechatronics Engineering, Harbin Institute of Technology, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brunel University London", 
          "id": "https://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "School of Mechatronics Engineering, Harbin Institute of Technology, 150001, Harbin, China", 
            "College of Engineering, Design and Physical Sciences, Brunel University, London, UB 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Kai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Mechatronics Engineering, Harbin Institute of Technology, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Hui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Mechatronics Engineering, Harbin Institute of Technology, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Liang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2011.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000713696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-011-9498-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009078308", 
          "https://doi.org/10.1007/s11075-011-9498-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/19/7/075102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011380905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2011.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011389046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)60515-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015951666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2012.01.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019129269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-02807-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021225648", 
          "https://doi.org/10.1007/978-3-319-02807-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-02807-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021225648", 
          "https://doi.org/10.1007/978-3-319-02807-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0263-2241(96)00066-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024057602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2015.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025261978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2005.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027782582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2011.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031100829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2008.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031704768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3901/cjme.2013.01.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032330846", 
          "https://doi.org/10.3901/cjme.2013.01.151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2013.09.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032359505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-6359(02)00106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038787949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2014.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043297584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1299/jsmec.40.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043458051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84996-254-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047046630", 
          "https://doi.org/10.1007/978-1-84996-254-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84996-254-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047046630", 
          "https://doi.org/10.1007/978-1-84996-254-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2003.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047869837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijnm.2012.044656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067481494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11465-017-0432-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084031668", 
          "https://doi.org/10.1007/s11465-017-0432-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.25.010312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085271043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2017.07.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091195867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098872935"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition. In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to different positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the effects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coefficient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the effects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s10033-019-0338-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297527", 
        "issn": [
          "0577-6686", 
          "2192-8258"
        ], 
        "name": "Chinese Journal of Mechanical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "On-Machine Measurement of the Straightness and Tilt Errors of a Linear Slideway Using a New Four-Sensor Method", 
    "pagination": "24", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1690bdb8f3d671f18351cde49b973b583f67dbe5c39ecd5c7d3514fe4fb99099"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s10033-019-0338-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112831790"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s10033-019-0338-6", 
      "https://app.dimensions.ai/details/publication/pub.1112831790"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118344_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs10033-019-0338-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0338-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0338-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0338-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0338-6'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s10033-019-0338-6 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nea237b4e175b44a3998b659d77ac7f42
4 schema:citation sg:pub.10.1007/978-1-84996-254-4
5 sg:pub.10.1007/978-3-319-02807-1
6 sg:pub.10.1007/s11075-011-9498-x
7 sg:pub.10.1007/s11465-017-0432-3
8 sg:pub.10.3901/cjme.2013.01.151
9 https://doi.org/10.1016/j.cirp.2008.09.008
10 https://doi.org/10.1016/j.ijmachtools.2011.08.011
11 https://doi.org/10.1016/j.ijmachtools.2015.02.001
12 https://doi.org/10.1016/j.measurement.2012.01.048
13 https://doi.org/10.1016/j.measurement.2013.09.049
14 https://doi.org/10.1016/j.precisioneng.2003.10.001
15 https://doi.org/10.1016/j.precisioneng.2005.07.006
16 https://doi.org/10.1016/j.precisioneng.2011.01.004
17 https://doi.org/10.1016/j.precisioneng.2011.11.001
18 https://doi.org/10.1016/j.precisioneng.2014.05.008
19 https://doi.org/10.1016/s0007-8506(07)60515-0
20 https://doi.org/10.1016/s0141-6359(02)00106-x
21 https://doi.org/10.1016/s0263-2241(96)00066-8
22 https://doi.org/10.1088/0957-0233/19/7/075102
23 https://doi.org/10.1142/9120
24 https://doi.org/10.1299/jsmec.40.253
25 https://doi.org/10.1364/oe.25.010312
26 https://doi.org/10.1504/ijnm.2012.044656
27 https://doi.org/10.3901/jme.2017.07.113
28 schema:datePublished 2019-12
29 schema:datePublishedReg 2019-12-01
30 schema:description Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition. In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to different positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the effects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coefficient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the effects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N3e9abf53be564715ae8f9640ca1ca839
35 Necf7087b541947a8ba1d667c7b76695d
36 sg:journal.1297527
37 schema:name On-Machine Measurement of the Straightness and Tilt Errors of a Linear Slideway Using a New Four-Sensor Method
38 schema:pagination 24
39 schema:productId N9a945f7e021b4266970c427ea2c1e4b5
40 Nc5ae5c21ed324504a9f1ef0f0a9fb1db
41 Nea0447c98eba4deda51c7dcdb8b39372
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112831790
43 https://doi.org/10.1186/s10033-019-0338-6
44 schema:sdDatePublished 2019-04-11T12:07
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N66ff2c3c47584ddb9342a74e6e8236ca
47 schema:url https://link.springer.com/10.1186%2Fs10033-019-0338-6
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N105592b14b7c456d933b4154b3b750da schema:affiliation https://www.grid.ac/institutes/grid.7728.a
52 schema:familyName Cheng
53 schema:givenName Kai
54 rdf:type schema:Person
55 N3e9abf53be564715ae8f9640ca1ca839 schema:volumeNumber 32
56 rdf:type schema:PublicationVolume
57 N55985e868fc94298976ec39605e19129 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
58 schema:familyName Zhao
59 schema:givenName Lei
60 rdf:type schema:Person
61 N60f6b982b04949baaf59cde924a58dee rdf:first Nc4801bf379844931bb679bd9a5b2b4af
62 rdf:rest N9bf2ee62a54645d0be0fcea337ce53a7
63 N66ff2c3c47584ddb9342a74e6e8236ca schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N9a945f7e021b4266970c427ea2c1e4b5 schema:name readcube_id
66 schema:value 1690bdb8f3d671f18351cde49b973b583f67dbe5c39ecd5c7d3514fe4fb99099
67 rdf:type schema:PropertyValue
68 N9bf2ee62a54645d0be0fcea337ce53a7 rdf:first Na3233c1d2f1f4d769539b383ac3a6fc4
69 rdf:rest rdf:nil
70 Na3233c1d2f1f4d769539b383ac3a6fc4 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
71 schema:familyName Zhao
72 schema:givenName Liang
73 rdf:type schema:Person
74 Nc4801bf379844931bb679bd9a5b2b4af schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
75 schema:familyName Ding
76 schema:givenName Hui
77 rdf:type schema:Person
78 Nc5ae5c21ed324504a9f1ef0f0a9fb1db schema:name dimensions_id
79 schema:value pub.1112831790
80 rdf:type schema:PropertyValue
81 Ndcbdb3c073bb4e47be6cc99aabcbfda6 rdf:first N105592b14b7c456d933b4154b3b750da
82 rdf:rest N60f6b982b04949baaf59cde924a58dee
83 Nea0447c98eba4deda51c7dcdb8b39372 schema:name doi
84 schema:value 10.1186/s10033-019-0338-6
85 rdf:type schema:PropertyValue
86 Nea237b4e175b44a3998b659d77ac7f42 rdf:first N55985e868fc94298976ec39605e19129
87 rdf:rest Ndcbdb3c073bb4e47be6cc99aabcbfda6
88 Necf7087b541947a8ba1d667c7b76695d schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
94 schema:name Other Physical Sciences
95 rdf:type schema:DefinedTerm
96 sg:journal.1297527 schema:issn 0577-6686
97 2192-8258
98 schema:name Chinese Journal of Mechanical Engineering
99 rdf:type schema:Periodical
100 sg:pub.10.1007/978-1-84996-254-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047046630
101 https://doi.org/10.1007/978-1-84996-254-4
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-319-02807-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021225648
104 https://doi.org/10.1007/978-3-319-02807-1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11075-011-9498-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009078308
107 https://doi.org/10.1007/s11075-011-9498-x
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11465-017-0432-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084031668
110 https://doi.org/10.1007/s11465-017-0432-3
111 rdf:type schema:CreativeWork
112 sg:pub.10.3901/cjme.2013.01.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032330846
113 https://doi.org/10.3901/cjme.2013.01.151
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.cirp.2008.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031704768
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ijmachtools.2011.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011389046
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijmachtools.2015.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025261978
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.measurement.2012.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019129269
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.measurement.2013.09.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032359505
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.precisioneng.2003.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047869837
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.precisioneng.2005.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027782582
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.precisioneng.2011.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000713696
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.precisioneng.2011.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031100829
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.precisioneng.2014.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043297584
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0007-8506(07)60515-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015951666
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0141-6359(02)00106-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038787949
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0263-2241(96)00066-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024057602
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/0957-0233/19/7/075102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011380905
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1142/9120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098872935
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1299/jsmec.40.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043458051
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1364/oe.25.010312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085271043
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1504/ijnm.2012.044656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067481494
150 rdf:type schema:CreativeWork
151 https://doi.org/10.3901/jme.2017.07.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091195867
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
154 schema:name School of Mechatronics Engineering, Harbin Institute of Technology, 150001, Harbin, China
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.7728.a schema:alternateName Brunel University London
157 schema:name College of Engineering, Design and Physical Sciences, Brunel University, London, UB 3PH, Uxbridge, UK
158 School of Mechatronics Engineering, Harbin Institute of Technology, 150001, Harbin, China
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...