A Modified Iterated Greedy Algorithm for Flexible Job Shop Scheduling Problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Ghiath Al Aqel, Xinyu Li, Liang Gao

ABSTRACT

The flexible job shop scheduling problem (FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are categorized as metaheuristic methods. Some of these methods normally consume more CPU time and some other methods are more complicated which make them difficult to code and not easy to reproduce. This paper proposes a modified iterated greedy (IG) algorithm to deal with FJSP problem in order to provide a simpler metaheuristic, which is easier to code and to reproduce than some other much more complex methods. This is done by separating the classical IG into two phases. Each phase is used to solve a sub-problem of the FJSP: sequencing and routing sub-problems. A set of dispatching rules are employed in the proposed algorithm for the sequencing and machine selection in the construction phase of the solution. To evaluate the performance of proposed algorithm, some experiments including some famous FJSP benchmarks have been conducted. By compared with other algorithms, the experimental results show that the presented algorithm is competitive and able to find global optimum for most instances. The simplicity of the proposed IG provides an effective method that is also easy to apply and consumes less CPU time in solving the FJSP problem. More... »

PAGES

21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s10033-019-0337-7

DOI

http://dx.doi.org/10.1186/s10033-019-0337-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112738951


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Huazhong University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al Aqel", 
        "givenName": "Ghiath", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huazhong University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xinyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huazhong University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Liang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11590-013-0669-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000168381", 
          "https://doi.org/10.1007/s11590-013-0669-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2005.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000700425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2008.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003291378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-0483(83)90088-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005417958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-0483(83)90088-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005417958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88518-4_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005871530", 
          "https://doi.org/10.1007/978-3-540-88518-4_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88518-4_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005871530", 
          "https://doi.org/10.1007/978-3-540-88518-4_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2012.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007473920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.05.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008456083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2012.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009118985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1389095.1389207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013029847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015725053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2009.11.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015923601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2013.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016684396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022482943", 
          "https://doi.org/10.1007/bf02238804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022482943", 
          "https://doi.org/10.1007/bf02238804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022482943", 
          "https://doi.org/10.1007/bf02238804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2015.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023629797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2014.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026748425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4754(02)00019-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027380032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2007.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029130719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-013-0986-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033426425", 
          "https://doi.org/10.1007/s11227-013-0986-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/23311916.2015.1070494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033776158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2014.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035127869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207540600786715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035128966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01721162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038553743", 
          "https://doi.org/10.1007/bf01721162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01721162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038553743", 
          "https://doi.org/10.1007/bf01721162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2013.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038773469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10732-014-9279-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039356486", 
          "https://doi.org/10.1007/s10732-014-9279-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02023073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040391875", 
          "https://doi.org/10.1007/bf02023073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02023073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040391875", 
          "https://doi.org/10.1007/bf02023073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10845-007-0026-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040656781", 
          "https://doi.org/10.1007/s10845-007-0026-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207543.2016.1224949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043932367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2016.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045614592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2013.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046200824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048472698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2015.2481463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051356408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051927043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2007.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052168768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10015-015-0259-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053475253", 
          "https://doi.org/10.1007/s10015-015-0259-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2015.2429314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2002.1009117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2009.07.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071551256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14743/apem2017.1.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084318473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2507/ijsimm16(3)co11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091642865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cciot.2016.7868294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093355482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iceets.2016.7583875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093572263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cac.2015.7382819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093833969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1999.772512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094886199"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The flexible job shop scheduling problem (FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are categorized as metaheuristic methods. Some of these methods normally consume more CPU time and some other methods are more complicated which make them difficult to code and not easy to reproduce. This paper proposes a modified iterated greedy (IG) algorithm to deal with FJSP problem in order to provide a simpler metaheuristic, which is easier to code and to reproduce than some other much more complex methods. This is done by separating the classical IG into two phases. Each phase is used to solve a sub-problem of the FJSP: sequencing and routing sub-problems. A set of dispatching rules are employed in the proposed algorithm for the sequencing and machine selection in the construction phase of the solution. To evaluate the performance of proposed algorithm, some experiments including some famous FJSP benchmarks have been conducted. By compared with other algorithms, the experimental results show that the presented algorithm is competitive and able to find global optimum for most instances. The simplicity of the proposed IG provides an effective method that is also easy to apply and consumes less CPU time in solving the FJSP problem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s10033-019-0337-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297527", 
        "issn": [
          "0577-6686", 
          "2192-8258"
        ], 
        "name": "Chinese Journal of Mechanical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "A Modified Iterated Greedy Algorithm for Flexible Job Shop Scheduling Problem", 
    "pagination": "21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "63e0c0f74409107af7ce4e077253ee89e003aa11dd1a456457a379ff24f10d7e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s10033-019-0337-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112738951"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s10033-019-0337-7", 
      "https://app.dimensions.ai/details/publication/pub.1112738951"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127435_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs10033-019-0337-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0337-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0337-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0337-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0337-7'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s10033-019-0337-7 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Nc49747c289294fb29aee3f83edfd101a
4 schema:citation sg:pub.10.1007/978-3-540-88518-4_54
5 sg:pub.10.1007/bf01721162
6 sg:pub.10.1007/bf02023073
7 sg:pub.10.1007/bf02238804
8 sg:pub.10.1007/s10015-015-0259-0
9 sg:pub.10.1007/s10732-014-9279-5
10 sg:pub.10.1007/s10845-007-0026-8
11 sg:pub.10.1007/s11227-013-0986-8
12 sg:pub.10.1007/s11590-013-0669-7
13 https://doi.org/10.1016/0305-0483(83)90088-9
14 https://doi.org/10.1016/j.apm.2012.03.020
15 https://doi.org/10.1016/j.asoc.2013.02.013
16 https://doi.org/10.1016/j.cie.2013.02.022
17 https://doi.org/10.1016/j.cie.2014.12.001
18 https://doi.org/10.1016/j.cor.2007.01.001
19 https://doi.org/10.1016/j.cor.2007.02.014
20 https://doi.org/10.1016/j.cor.2008.06.007
21 https://doi.org/10.1016/j.cor.2014.08.023
22 https://doi.org/10.1016/j.cor.2015.11.004
23 https://doi.org/10.1016/j.ejor.2005.12.009
24 https://doi.org/10.1016/j.ejor.2006.07.029
25 https://doi.org/10.1016/j.ejor.2010.03.030
26 https://doi.org/10.1016/j.ejor.2010.05.041
27 https://doi.org/10.1016/j.ejor.2012.04.034
28 https://doi.org/10.1016/j.eswa.2015.06.004
29 https://doi.org/10.1016/j.ijpe.2009.11.032
30 https://doi.org/10.1016/j.ijpe.2016.01.016
31 https://doi.org/10.1016/j.omega.2013.10.002
32 https://doi.org/10.1016/s0378-4754(02)00019-8
33 https://doi.org/10.1080/00207540600786715
34 https://doi.org/10.1080/00207543.2016.1224949
35 https://doi.org/10.1080/23311916.2015.1070494
36 https://doi.org/10.1109/access.2015.2481463
37 https://doi.org/10.1109/cac.2015.7382819
38 https://doi.org/10.1109/cciot.2016.7868294
39 https://doi.org/10.1109/iceets.2016.7583875
40 https://doi.org/10.1109/robot.1999.772512
41 https://doi.org/10.1109/tevc.2015.2429314
42 https://doi.org/10.1109/tsmcc.2002.1009117
43 https://doi.org/10.1145/1389095.1389207
44 https://doi.org/10.14743/apem2017.1.235
45 https://doi.org/10.2507/ijsimm16(3)co11
46 https://doi.org/10.3901/jme.2009.07.145
47 schema:datePublished 2019-12
48 schema:datePublishedReg 2019-12-01
49 schema:description The flexible job shop scheduling problem (FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are categorized as metaheuristic methods. Some of these methods normally consume more CPU time and some other methods are more complicated which make them difficult to code and not easy to reproduce. This paper proposes a modified iterated greedy (IG) algorithm to deal with FJSP problem in order to provide a simpler metaheuristic, which is easier to code and to reproduce than some other much more complex methods. This is done by separating the classical IG into two phases. Each phase is used to solve a sub-problem of the FJSP: sequencing and routing sub-problems. A set of dispatching rules are employed in the proposed algorithm for the sequencing and machine selection in the construction phase of the solution. To evaluate the performance of proposed algorithm, some experiments including some famous FJSP benchmarks have been conducted. By compared with other algorithms, the experimental results show that the presented algorithm is competitive and able to find global optimum for most instances. The simplicity of the proposed IG provides an effective method that is also easy to apply and consumes less CPU time in solving the FJSP problem.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N3c5f9f6a477548e995ca9424ef86cc55
54 N7eedb5c048b04eb1914933d22cf4a00e
55 sg:journal.1297527
56 schema:name A Modified Iterated Greedy Algorithm for Flexible Job Shop Scheduling Problem
57 schema:pagination 21
58 schema:productId N9978738e167a4eda9b1591392e1c530a
59 Nf82ccbd6383f495a89e4001dc4a7db13
60 Nffa846d0337c41c4a5e5f1359278c1da
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112738951
62 https://doi.org/10.1186/s10033-019-0337-7
63 schema:sdDatePublished 2019-04-11T11:39
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Ndcdef4cd43f64802a2b24adcf4dcc3aa
66 schema:url https://link.springer.com/10.1186%2Fs10033-019-0337-7
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N36af4a507cbf451ea5f687ff850801e6 rdf:first N70bdf258ac1644b2aa8357aeb34641c0
71 rdf:rest Nce1d77e7cfa34f54acf835fb7d3e6271
72 N3c5f9f6a477548e995ca9424ef86cc55 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N58b974e179574bfbba93c8ef6b251257 schema:affiliation https://www.grid.ac/institutes/grid.33199.31
75 schema:familyName Gao
76 schema:givenName Liang
77 rdf:type schema:Person
78 N70bdf258ac1644b2aa8357aeb34641c0 schema:affiliation https://www.grid.ac/institutes/grid.33199.31
79 schema:familyName Li
80 schema:givenName Xinyu
81 rdf:type schema:Person
82 N7eedb5c048b04eb1914933d22cf4a00e schema:volumeNumber 32
83 rdf:type schema:PublicationVolume
84 N7f46e6c9644745d1aaf628ae9c5d3c09 schema:affiliation https://www.grid.ac/institutes/grid.33199.31
85 schema:familyName Al Aqel
86 schema:givenName Ghiath
87 rdf:type schema:Person
88 N9978738e167a4eda9b1591392e1c530a schema:name readcube_id
89 schema:value 63e0c0f74409107af7ce4e077253ee89e003aa11dd1a456457a379ff24f10d7e
90 rdf:type schema:PropertyValue
91 Nc49747c289294fb29aee3f83edfd101a rdf:first N7f46e6c9644745d1aaf628ae9c5d3c09
92 rdf:rest N36af4a507cbf451ea5f687ff850801e6
93 Nce1d77e7cfa34f54acf835fb7d3e6271 rdf:first N58b974e179574bfbba93c8ef6b251257
94 rdf:rest rdf:nil
95 Ndcdef4cd43f64802a2b24adcf4dcc3aa schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nf82ccbd6383f495a89e4001dc4a7db13 schema:name dimensions_id
98 schema:value pub.1112738951
99 rdf:type schema:PropertyValue
100 Nffa846d0337c41c4a5e5f1359278c1da schema:name doi
101 schema:value 10.1186/s10033-019-0337-7
102 rdf:type schema:PropertyValue
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
107 schema:name Computation Theory and Mathematics
108 rdf:type schema:DefinedTerm
109 sg:journal.1297527 schema:issn 0577-6686
110 2192-8258
111 schema:name Chinese Journal of Mechanical Engineering
112 rdf:type schema:Periodical
113 sg:pub.10.1007/978-3-540-88518-4_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005871530
114 https://doi.org/10.1007/978-3-540-88518-4_54
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01721162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038553743
117 https://doi.org/10.1007/bf01721162
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf02023073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040391875
120 https://doi.org/10.1007/bf02023073
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf02238804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022482943
123 https://doi.org/10.1007/bf02238804
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10015-015-0259-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053475253
126 https://doi.org/10.1007/s10015-015-0259-0
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10732-014-9279-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039356486
129 https://doi.org/10.1007/s10732-014-9279-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10845-007-0026-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656781
132 https://doi.org/10.1007/s10845-007-0026-8
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11227-013-0986-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033426425
135 https://doi.org/10.1007/s11227-013-0986-8
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11590-013-0669-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000168381
138 https://doi.org/10.1007/s11590-013-0669-7
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0305-0483(83)90088-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005417958
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.apm.2012.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007473920
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.asoc.2013.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038773469
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cie.2013.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016684396
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.cie.2014.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035127869
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.cor.2007.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052168768
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cor.2007.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029130719
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.cor.2008.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003291378
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.cor.2014.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026748425
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cor.2015.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023629797
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ejor.2005.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000700425
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ejor.2006.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051927043
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ejor.2010.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015725053
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ejor.2010.05.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008456083
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ejor.2012.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009118985
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.eswa.2015.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048472698
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ijpe.2009.11.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015923601
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.ijpe.2016.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045614592
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.omega.2013.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046200824
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0378-4754(02)00019-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027380032
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/00207540600786715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035128966
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/00207543.2016.1224949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043932367
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/23311916.2015.1070494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033776158
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/access.2015.2481463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051356408
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/cac.2015.7382819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093833969
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/cciot.2016.7868294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093355482
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/iceets.2016.7583875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093572263
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/robot.1999.772512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094886199
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/tevc.2015.2429314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605258
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/tsmcc.2002.1009117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797633
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1145/1389095.1389207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013029847
201 rdf:type schema:CreativeWork
202 https://doi.org/10.14743/apem2017.1.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084318473
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2507/ijsimm16(3)co11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091642865
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3901/jme.2009.07.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071551256
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.33199.31 schema:alternateName Huazhong University of Science and Technology
209 schema:name State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...