Unsteady Flow and Structural Behaviors of Centrifugal Pump under Cavitation Conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Denghao Wu, Yun Ren, Jiegang Mou, Yunqing Gu, Lanfang Jiang

ABSTRACT

Cavitation has a significant effect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under different cavitation conditions. A strong two-way coupling fluid-structure interaction simulation is applied to obtain interior views of the effects of cavitating bubbles on the flow and structural dynamics of a pump. The renormalization-group k-ε turbulence model and the Zwart–Gerbe–Belamri cavitation model are solved for the fluid side, while a transient structural dynamic analysis is employed for the structure side. The different cavitation states are mapped in the head-net positive suction head (H-NPSH) curves and flow field features inside the impeller are fully revealed. Results indicate that cavitating bubbles grow and expand rapidly with decreasing NPSH. In addition, the pressure fluctuations, both in the impeller and volute, are quantitatively analyzed and associated with the cavitation states. It is shown that influence of the cavitation on the flow field is critical, specifically in the super-cavitation state. The effect of cavitation on the unsteady radial force and blade loads is also discussed. The results indicate that the averaged radial force increased from 8.5 N to 54.4 N in the transition progress from an onset cavitation state to a super-cavitation state. Furthermore, the structural behaviors, including blade deformation, stress, and natural frequencies, corresponding to the cavitation states are discussed. A large volume of cavitating bubbles weakens the fluid forces on the blade and decreases the natural frequencies of the rotor system. This study could enhance the understanding of the effects of cavitation on pump flow and structural behaviors. More... »

PAGES

17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s10033-019-0328-8

DOI

http://dx.doi.org/10.1186/s10033-019-0328-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112437580


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Mechanical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
            "Zhijiang College, Zhejiang University of Technology, 310024, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Denghao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Zhijiang College, Zhejiang University of Technology, 310024, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Yun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Mechanical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mou", 
        "givenName": "Jiegang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Mechanical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Yunqing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Zhijiang College, Zhejiang University of Technology, 310024, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Lanfang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compfluid.2016.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019200912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anucene.2016.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019917274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfluidstructs.2011.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034599496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/ec-09-2014-0179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042296074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/853560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043291422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-014-1726-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043812471", 
          "https://doi.org/10.1007/s00348-014-1726-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfluidstructs.2012.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045850817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euromechflu.2016.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048868777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1457451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062070230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1596238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062072711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2820726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062084945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4000845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062141207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406215570105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063884925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406215570105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063884925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-017-0220-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084034504", 
          "https://doi.org/10.1007/s12206-017-0220-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-017-0220-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084034504", 
          "https://doi.org/10.1007/s12206-017-0220-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1687814017696225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084927086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1687814017696225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084927086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1687814017696227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084932885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1687814017696227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084932885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marstruc.2017.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085722782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2017.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091503668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2018.02.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101219626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfluidstructs.2018.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105733774"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Cavitation has a significant effect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under different cavitation conditions. A strong two-way coupling fluid-structure interaction simulation is applied to obtain interior views of the effects of cavitating bubbles on the flow and structural dynamics of a pump. The renormalization-group k-\u03b5 turbulence model and the Zwart\u2013Gerbe\u2013Belamri cavitation model are solved for the fluid side, while a transient structural dynamic analysis is employed for the structure side. The different cavitation states are mapped in the head-net positive suction head (H-NPSH) curves and flow field features inside the impeller are fully revealed. Results indicate that cavitating bubbles grow and expand rapidly with decreasing NPSH. In addition, the pressure fluctuations, both in the impeller and volute, are quantitatively analyzed and associated with the cavitation states. It is shown that influence of the cavitation on the flow field is critical, specifically in the super-cavitation state. The effect of cavitation on the unsteady radial force and blade loads is also discussed. The results indicate that the averaged radial force increased from 8.5 N to 54.4 N in the transition progress from an onset cavitation state to a super-cavitation state. Furthermore, the structural behaviors, including blade deformation, stress, and natural frequencies, corresponding to the cavitation states are discussed. A large volume of cavitating bubbles weakens the fluid forces on the blade and decreases the natural frequencies of the rotor system. This study could enhance the understanding of the effects of cavitation on pump flow and structural behaviors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s10033-019-0328-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297527", 
        "issn": [
          "0577-6686", 
          "2192-8258"
        ], 
        "name": "Chinese Journal of Mechanical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Unsteady Flow and Structural Behaviors of Centrifugal Pump under Cavitation Conditions", 
    "pagination": "17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e9d4a9700c8c458af8b8c4023401eff7938258b15e5b4ec69f621503459d9eb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s10033-019-0328-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112437580"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s10033-019-0328-8", 
      "https://app.dimensions.ai/details/publication/pub.1112437580"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54297_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs10033-019-0328-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0328-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0328-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0328-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0328-8'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s10033-019-0328-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Naa3a8d7e5de3412f92fc279e23a0cecc
4 schema:citation sg:pub.10.1007/s00348-014-1726-4
5 sg:pub.10.1007/s12206-017-0220-3
6 https://doi.org/10.1016/j.anucene.2016.07.011
7 https://doi.org/10.1016/j.compfluid.2016.03.022
8 https://doi.org/10.1016/j.euromechflu.2016.09.004
9 https://doi.org/10.1016/j.ijmultiphaseflow.2017.08.016
10 https://doi.org/10.1016/j.jfluidstructs.2011.08.010
11 https://doi.org/10.1016/j.jfluidstructs.2012.08.005
12 https://doi.org/10.1016/j.jfluidstructs.2018.07.010
13 https://doi.org/10.1016/j.marstruc.2017.05.006
14 https://doi.org/10.1016/j.renene.2018.02.114
15 https://doi.org/10.1103/physrevlett.57.1722
16 https://doi.org/10.1108/ec-09-2014-0179
17 https://doi.org/10.1115/1.1457451
18 https://doi.org/10.1115/1.1596238
19 https://doi.org/10.1115/1.2820726
20 https://doi.org/10.1115/1.4000845
21 https://doi.org/10.1155/2011/853560
22 https://doi.org/10.1177/0954406215570105
23 https://doi.org/10.1177/1687814017696225
24 https://doi.org/10.1177/1687814017696227
25 schema:datePublished 2019-12
26 schema:datePublishedReg 2019-12-01
27 schema:description Cavitation has a significant effect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under different cavitation conditions. A strong two-way coupling fluid-structure interaction simulation is applied to obtain interior views of the effects of cavitating bubbles on the flow and structural dynamics of a pump. The renormalization-group k-ε turbulence model and the Zwart–Gerbe–Belamri cavitation model are solved for the fluid side, while a transient structural dynamic analysis is employed for the structure side. The different cavitation states are mapped in the head-net positive suction head (H-NPSH) curves and flow field features inside the impeller are fully revealed. Results indicate that cavitating bubbles grow and expand rapidly with decreasing NPSH. In addition, the pressure fluctuations, both in the impeller and volute, are quantitatively analyzed and associated with the cavitation states. It is shown that influence of the cavitation on the flow field is critical, specifically in the super-cavitation state. The effect of cavitation on the unsteady radial force and blade loads is also discussed. The results indicate that the averaged radial force increased from 8.5 N to 54.4 N in the transition progress from an onset cavitation state to a super-cavitation state. Furthermore, the structural behaviors, including blade deformation, stress, and natural frequencies, corresponding to the cavitation states are discussed. A large volume of cavitating bubbles weakens the fluid forces on the blade and decreases the natural frequencies of the rotor system. This study could enhance the understanding of the effects of cavitation on pump flow and structural behaviors.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N87712df9bdc540f59fc8d6687d6e412b
32 Na1ad008f346a45339d2ba0a888df37c6
33 sg:journal.1297527
34 schema:name Unsteady Flow and Structural Behaviors of Centrifugal Pump under Cavitation Conditions
35 schema:pagination 17
36 schema:productId N18c9025c366c4704a1e8bdefd339edae
37 N9aff0fe4f3414452862a89c742ac1ab6
38 Nec315713899c4ab694a1a7e6c701934f
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112437580
40 https://doi.org/10.1186/s10033-019-0328-8
41 schema:sdDatePublished 2019-04-11T10:15
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Na30a8f7c2c714dd1a481944412abd261
44 schema:url https://link.springer.com/10.1186%2Fs10033-019-0328-8
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0a15548ed4254b7b8ffa704384fc09b7 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
49 schema:familyName Gu
50 schema:givenName Yunqing
51 rdf:type schema:Person
52 N18c9025c366c4704a1e8bdefd339edae schema:name readcube_id
53 schema:value 7e9d4a9700c8c458af8b8c4023401eff7938258b15e5b4ec69f621503459d9eb
54 rdf:type schema:PropertyValue
55 N529e04a9d3374e8e9bba2edbee7fe5fe schema:affiliation https://www.grid.ac/institutes/grid.469325.f
56 schema:familyName Mou
57 schema:givenName Jiegang
58 rdf:type schema:Person
59 N5422b8ea2a71443f89391973206f0a7e rdf:first N72c1eae3091a413cbd8641937eef0373
60 rdf:rest Nfb4adbfcf335403c886dfe25b5af24d2
61 N624e39b7e9e545b09559fdbb2cdc2d6b schema:affiliation https://www.grid.ac/institutes/grid.469325.f
62 schema:familyName Wu
63 schema:givenName Denghao
64 rdf:type schema:Person
65 N72c1eae3091a413cbd8641937eef0373 schema:affiliation Ne1a3fe90d227435abb43de2fcac90891
66 schema:familyName Ren
67 schema:givenName Yun
68 rdf:type schema:Person
69 N87712df9bdc540f59fc8d6687d6e412b schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N8d8d48fd7c1a4014b4bcd483cb32c02b schema:affiliation Nc9dfdf03130548cf956d90204d9957f2
72 schema:familyName Jiang
73 schema:givenName Lanfang
74 rdf:type schema:Person
75 N901046ce230e40bbbfa9ca13c26bfc29 rdf:first N0a15548ed4254b7b8ffa704384fc09b7
76 rdf:rest Nc504036309c848a5b097e0b215b310ac
77 N9aff0fe4f3414452862a89c742ac1ab6 schema:name doi
78 schema:value 10.1186/s10033-019-0328-8
79 rdf:type schema:PropertyValue
80 Na1ad008f346a45339d2ba0a888df37c6 schema:volumeNumber 32
81 rdf:type schema:PublicationVolume
82 Na30a8f7c2c714dd1a481944412abd261 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Naa3a8d7e5de3412f92fc279e23a0cecc rdf:first N624e39b7e9e545b09559fdbb2cdc2d6b
85 rdf:rest N5422b8ea2a71443f89391973206f0a7e
86 Nc504036309c848a5b097e0b215b310ac rdf:first N8d8d48fd7c1a4014b4bcd483cb32c02b
87 rdf:rest rdf:nil
88 Nc9dfdf03130548cf956d90204d9957f2 schema:name Zhijiang College, Zhejiang University of Technology, 310024, Hangzhou, China
89 rdf:type schema:Organization
90 Ne1a3fe90d227435abb43de2fcac90891 schema:name Zhijiang College, Zhejiang University of Technology, 310024, Hangzhou, China
91 rdf:type schema:Organization
92 Nec315713899c4ab694a1a7e6c701934f schema:name dimensions_id
93 schema:value pub.1112437580
94 rdf:type schema:PropertyValue
95 Nfb4adbfcf335403c886dfe25b5af24d2 rdf:first N529e04a9d3374e8e9bba2edbee7fe5fe
96 rdf:rest N901046ce230e40bbbfa9ca13c26bfc29
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
101 schema:name Interdisciplinary Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1297527 schema:issn 0577-6686
104 2192-8258
105 schema:name Chinese Journal of Mechanical Engineering
106 rdf:type schema:Periodical
107 sg:pub.10.1007/s00348-014-1726-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043812471
108 https://doi.org/10.1007/s00348-014-1726-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s12206-017-0220-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084034504
111 https://doi.org/10.1007/s12206-017-0220-3
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.anucene.2016.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019917274
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.compfluid.2016.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019200912
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.euromechflu.2016.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048868777
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijmultiphaseflow.2017.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091503668
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jfluidstructs.2011.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034599496
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jfluidstructs.2012.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045850817
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jfluidstructs.2018.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105733774
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.marstruc.2017.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085722782
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.renene.2018.02.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101219626
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.57.1722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793884
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1108/ec-09-2014-0179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042296074
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1115/1.1457451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062070230
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1115/1.1596238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072711
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1115/1.2820726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062084945
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1115/1.4000845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062141207
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1155/2011/853560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043291422
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1177/0954406215570105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063884925
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1177/1687814017696225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084927086
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1177/1687814017696227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084932885
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
152 schema:name College of Mechanical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
153 Zhijiang College, Zhejiang University of Technology, 310024, Hangzhou, China
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...