Modelling of the Influence of Tool Runout on Surface Generation in Micro Milling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Wanqun Chen, Yazhou Sun, Dehong Huo, Xiangyu Teng

ABSTRACT

Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model offers a basis for designing and optimizing surface parameters of functional machined surfaces. More... »

PAGES

2

References to SciGraph publications

  • 2016-05. A micro-coupling for micro mechanical systems in CHINESE JOURNAL OF MECHANICAL ENGINEERING
  • 2016-09. Design and implementation of a system for laser assisted milling of advanced materials in CHINESE JOURNAL OF MECHANICAL ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s10033-019-0318-x

    DOI

    http://dx.doi.org/10.1186/s10033-019-0318-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111609391


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
                "Center for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Wanqun", 
            "id": "sg:person.014177120211.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177120211.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Center for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Yazhou", 
            "id": "sg:person.016167421177.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167421177.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Newcastle University", 
              "id": "https://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huo", 
            "givenName": "Dehong", 
            "id": "sg:person.011257331411.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257331411.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Newcastle University", 
              "id": "https://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Teng", 
            "givenName": "Xiangyu", 
            "id": "sg:person.010350451531.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350451531.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1063/1.1827602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009487807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5lc00234f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012708757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3901/cjme.2016.0115.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014583256", 
              "https://doi.org/10.3901/cjme.2016.0115.009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3901/cjme.2016.0303.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016411746", 
              "https://doi.org/10.3901/cjme.2016.0303.024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0039-9140(01)00594-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029871716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0007-8506(07)62071-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031468131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0007-8506(07)60490-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033163473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-4005(03)00266-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037058667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-4005(03)00266-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037058667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0960-1317/18/2/025006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042535444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2014.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044487673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0960-1317/20/6/065016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044553187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0960-1317/20/6/065016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044553187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2016.06.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047467951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1637633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062073318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1813469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062074938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1813470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062074939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icit.2015.7125594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095715503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1106891241", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model offers a basis for designing and optimizing surface parameters of functional machined surfaces.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s10033-019-0318-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3959750", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1297527", 
            "issn": [
              "0577-6686", 
              "2192-8258"
            ], 
            "name": "Chinese Journal of Mechanical Engineering", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "name": "Modelling of the Influence of Tool Runout on Surface Generation in Micro Milling", 
        "pagination": "2", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c3a745bfbed78e6edb688a5c84bb0247f1148460441fa7c1553b141a1dbf4741"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s10033-019-0318-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111609391"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s10033-019-0318-x", 
          "https://app.dimensions.ai/details/publication/pub.1111609391"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100782_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs10033-019-0318-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0318-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0318-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0318-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s10033-019-0318-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s10033-019-0318-x schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N28e45f92aadc4649af2188ebef17f923
    4 schema:citation sg:pub.10.3901/cjme.2016.0115.009
    5 sg:pub.10.3901/cjme.2016.0303.024
    6 https://app.dimensions.ai/details/publication/pub.1106891241
    7 https://doi.org/10.1016/j.jclepro.2016.06.035
    8 https://doi.org/10.1016/j.procir.2014.03.006
    9 https://doi.org/10.1016/s0007-8506(07)60490-9
    10 https://doi.org/10.1016/s0007-8506(07)62071-x
    11 https://doi.org/10.1016/s0039-9140(01)00594-x
    12 https://doi.org/10.1016/s0925-4005(03)00266-1
    13 https://doi.org/10.1039/c5lc00234f
    14 https://doi.org/10.1063/1.1827602
    15 https://doi.org/10.1088/0960-1317/18/2/025006
    16 https://doi.org/10.1088/0960-1317/20/6/065016
    17 https://doi.org/10.1109/icit.2015.7125594
    18 https://doi.org/10.1115/1.1637633
    19 https://doi.org/10.1115/1.1813469
    20 https://doi.org/10.1115/1.1813470
    21 schema:datePublished 2019-12
    22 schema:datePublishedReg 2019-12-01
    23 schema:description Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model offers a basis for designing and optimizing surface parameters of functional machined surfaces.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N2afa08e3dbb346b683a9bf2f5a882395
    28 N92561653450d4f60b5f734e8204dd427
    29 sg:journal.1297527
    30 schema:name Modelling of the Influence of Tool Runout on Surface Generation in Micro Milling
    31 schema:pagination 2
    32 schema:productId N34f64e13d1ac4f72b0560402508459da
    33 Nbc7241e818c54d6c94e973a0660c0f79
    34 Nd06e69e9f7ba40d49d20f34490a2ab82
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111609391
    36 https://doi.org/10.1186/s10033-019-0318-x
    37 schema:sdDatePublished 2019-04-11T08:55
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Nce28bedc630d419ab504c6e0f93b6dac
    40 schema:url https://link.springer.com/10.1186%2Fs10033-019-0318-x
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N28e45f92aadc4649af2188ebef17f923 rdf:first sg:person.014177120211.64
    45 rdf:rest Ncb2b9cc6fe3c4c77850758c8bf505b85
    46 N2afa08e3dbb346b683a9bf2f5a882395 schema:issueNumber 1
    47 rdf:type schema:PublicationIssue
    48 N34f64e13d1ac4f72b0560402508459da schema:name readcube_id
    49 schema:value c3a745bfbed78e6edb688a5c84bb0247f1148460441fa7c1553b141a1dbf4741
    50 rdf:type schema:PropertyValue
    51 N92561653450d4f60b5f734e8204dd427 schema:volumeNumber 32
    52 rdf:type schema:PublicationVolume
    53 Nbc7241e818c54d6c94e973a0660c0f79 schema:name dimensions_id
    54 schema:value pub.1111609391
    55 rdf:type schema:PropertyValue
    56 Nc1a328c8ee3e40f799df72e6ef2c5536 rdf:first sg:person.011257331411.41
    57 rdf:rest Nddea6835e07046ae94f3b8eaf69b484b
    58 Ncb2b9cc6fe3c4c77850758c8bf505b85 rdf:first sg:person.016167421177.22
    59 rdf:rest Nc1a328c8ee3e40f799df72e6ef2c5536
    60 Nce28bedc630d419ab504c6e0f93b6dac schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 Nd06e69e9f7ba40d49d20f34490a2ab82 schema:name doi
    63 schema:value 10.1186/s10033-019-0318-x
    64 rdf:type schema:PropertyValue
    65 Nddea6835e07046ae94f3b8eaf69b484b rdf:first sg:person.010350451531.11
    66 rdf:rest rdf:nil
    67 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Engineering
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Materials Engineering
    72 rdf:type schema:DefinedTerm
    73 sg:grant.3959750 http://pending.schema.org/fundedItem sg:pub.10.1186/s10033-019-0318-x
    74 rdf:type schema:MonetaryGrant
    75 sg:journal.1297527 schema:issn 0577-6686
    76 2192-8258
    77 schema:name Chinese Journal of Mechanical Engineering
    78 rdf:type schema:Periodical
    79 sg:person.010350451531.11 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
    80 schema:familyName Teng
    81 schema:givenName Xiangyu
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350451531.11
    83 rdf:type schema:Person
    84 sg:person.011257331411.41 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
    85 schema:familyName Huo
    86 schema:givenName Dehong
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257331411.41
    88 rdf:type schema:Person
    89 sg:person.014177120211.64 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    90 schema:familyName Chen
    91 schema:givenName Wanqun
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177120211.64
    93 rdf:type schema:Person
    94 sg:person.016167421177.22 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    95 schema:familyName Sun
    96 schema:givenName Yazhou
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167421177.22
    98 rdf:type schema:Person
    99 sg:pub.10.3901/cjme.2016.0115.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014583256
    100 https://doi.org/10.3901/cjme.2016.0115.009
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.3901/cjme.2016.0303.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016411746
    103 https://doi.org/10.3901/cjme.2016.0303.024
    104 rdf:type schema:CreativeWork
    105 https://app.dimensions.ai/details/publication/pub.1106891241 schema:CreativeWork
    106 https://doi.org/10.1016/j.jclepro.2016.06.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047467951
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.procir.2014.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044487673
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/s0007-8506(07)60490-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033163473
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0007-8506(07)62071-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031468131
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/s0039-9140(01)00594-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029871716
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/s0925-4005(03)00266-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037058667
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1039/c5lc00234f schema:sameAs https://app.dimensions.ai/details/publication/pub.1012708757
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1063/1.1827602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009487807
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1088/0960-1317/18/2/025006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042535444
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1088/0960-1317/20/6/065016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044553187
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/icit.2015.7125594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095715503
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1115/1.1637633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062073318
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1115/1.1813469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062074938
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1115/1.1813470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062074939
    133 rdf:type schema:CreativeWork
    134 https://www.grid.ac/institutes/grid.1006.7 schema:alternateName Newcastle University
    135 schema:name Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    136 rdf:type schema:Organization
    137 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
    138 schema:name Center for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, China
    139 Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...