Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-11

AUTHORS

André E Minoche, Juliane C Dohm, Heinz Himmelbauer

ABSTRACT

BACKGROUND: The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. RESULTS: We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range. CONCLUSIONS: The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms. More... »

PAGES

r112

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112

DOI

http://dx.doi.org/10.1186/gb-2011-12-11-r112

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027516867

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22067484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation, Laboratory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteriophage phi X 174", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Beta vulgaris", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis, Insertional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Deletion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Genomic Regulation", 
          "id": "https://www.grid.ac/institutes/grid.11478.3b", 
          "name": [
            "Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany", 
            "Centre for Genomic Regulation (CRG) and UPF, C. Dr. Aiguader 88, 08003, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minoche", 
        "givenName": "Andr\u00e9 E", 
        "id": "sg:person.0643042060.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643042060.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Genomic Regulation", 
          "id": "https://www.grid.ac/institutes/grid.11478.3b", 
          "name": [
            "Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany", 
            "Centre for Genomic Regulation (CRG) and UPF, C. Dr. Aiguader 88, 08003, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dohm", 
        "givenName": "Juliane C", 
        "id": "sg:person.01076010777.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076010777.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Genomic Regulation", 
          "id": "https://www.grid.ac/institutes/grid.11478.3b", 
          "name": [
            "Centre for Genomic Regulation (CRG) and UPF, C. Dr. Aiguader 88, 08003, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Himmelbauer", 
        "givenName": "Heinz", 
        "id": "sg:person.0663101302.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663101302.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2011-12-2-r18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000268052", 
          "https://doi.org/10.1186/gb-2011-12-2-r18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001773338", 
          "https://doi.org/10.1038/nmeth.1179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2008.03665.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013283092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016983398", 
          "https://doi.org/10.1038/nrg2986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.089151.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020733882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023653905", 
          "https://doi.org/10.1038/nmeth.1311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028265307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044298669", 
          "https://doi.org/10.1038/35048692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044298669", 
          "https://doi.org/10.1038/35048692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049624779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077603669", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-11", 
    "datePublishedReg": "2011-11-01", 
    "description": "BACKGROUND: The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases.\nRESULTS: We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range.\nCONCLUSIONS: The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2011-12-11-r112", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems", 
    "pagination": "r112", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83153f19be6861e11aab2be59da8889f6250a243af63e04530704199da9624fb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22067484"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2011-12-11-r112"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027516867"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2011-12-11-r112", 
      "https://app.dimensions.ai/details/publication/pub.1027516867"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2011-12-11-r112"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      59 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2011-12-11-r112 schema:about N02fb5a5992374d9c961e0b302cee0fbc
2 N0687f051bcce46559945af5f285058c2
3 N0bed3e4991af43d0a88be935ee999296
4 N0c02c7df574a465c9665a2000bf97d68
5 N1375514331c848f2bc202f1e616527c7
6 N205c871ec6e24e32ad0ac47dcd84afc1
7 N3394fc9981f84e0581546de7990a1b8c
8 N57089a1a469a4f82a362af982da0d7c8
9 N6a20348f0dda4420b6393b51bfc4d126
10 N808bb29a58af4c5691ea8af3b8ba4d35
11 N8f88cde0d03041079ddaf715d264ed99
12 N99a35764d2334f679d9e10830f53d4e2
13 Na16b497167514406b82ee31d1ed835ba
14 Na27e2ca5b51c4dc59f26354e8b320bdd
15 Nb35a678953844188b6344e82d679f548
16 Ncc5c41230a844b46a1fc56a13e38635a
17 anzsrc-for:06
18 anzsrc-for:0604
19 schema:author Ne61c689c67734aa7b607f24b56c3c996
20 schema:citation sg:pub.10.1038/35048692
21 sg:pub.10.1038/nature07517
22 sg:pub.10.1038/nmeth.1179
23 sg:pub.10.1038/nmeth.1311
24 sg:pub.10.1038/nrg2986
25 sg:pub.10.1186/gb-2009-10-3-r25
26 sg:pub.10.1186/gb-2011-12-2-r18
27 https://app.dimensions.ai/details/publication/pub.1077603669
28 https://doi.org/10.1093/bioinformatics/btp324
29 https://doi.org/10.1093/bioinformatics/btp666
30 https://doi.org/10.1093/nar/gkn425
31 https://doi.org/10.1093/nar/gkr344
32 https://doi.org/10.1101/gr.089151.108
33 https://doi.org/10.1111/j.1365-313x.2008.03665.x
34 schema:datePublished 2011-11
35 schema:datePublishedReg 2011-11-01
36 schema:description BACKGROUND: The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. RESULTS: We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range. CONCLUSIONS: The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N80ec8b0332fc4f2e9511380cce46d660
41 N9af7a675fbad469b8423ff7b80cfb1d0
42 sg:journal.1023439
43 schema:name Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems
44 schema:pagination r112
45 schema:productId N06ca15ddde8941d495b195a9931f8c4e
46 N27f0a158417b478eba02f951fd94f4a2
47 N2812b9e2c1c745a0a845a40ba6c89bcf
48 N3c8fda04ed9b41008050a13119fb29d2
49 Nce944734fdea452f9195165c26f67607
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516867
51 https://doi.org/10.1186/gb-2011-12-11-r112
52 schema:sdDatePublished 2019-04-10T13:17
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N70168892290e4b9280be473ba2316e68
55 schema:url http://link.springer.com/10.1186%2Fgb-2011-12-11-r112
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N02fb5a5992374d9c961e0b302cee0fbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Molecular Sequence Data
61 rdf:type schema:DefinedTerm
62 N0687f051bcce46559945af5f285058c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Reproducibility of Results
64 rdf:type schema:DefinedTerm
65 N06ca15ddde8941d495b195a9931f8c4e schema:name nlm_unique_id
66 schema:value 100960660
67 rdf:type schema:PropertyValue
68 N0bed3e4991af43d0a88be935ee999296 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Beta vulgaris
70 rdf:type schema:DefinedTerm
71 N0c02c7df574a465c9665a2000bf97d68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Automation, Laboratory
73 rdf:type schema:DefinedTerm
74 N1375514331c848f2bc202f1e616527c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Bacteriophage phi X 174
76 rdf:type schema:DefinedTerm
77 N205c871ec6e24e32ad0ac47dcd84afc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Base Composition
79 rdf:type schema:DefinedTerm
80 N215ee3b8dca64536a1157c7d9aa8f010 rdf:first sg:person.0663101302.91
81 rdf:rest rdf:nil
82 N27f0a158417b478eba02f951fd94f4a2 schema:name readcube_id
83 schema:value 83153f19be6861e11aab2be59da8889f6250a243af63e04530704199da9624fb
84 rdf:type schema:PropertyValue
85 N2812b9e2c1c745a0a845a40ba6c89bcf schema:name dimensions_id
86 schema:value pub.1027516867
87 rdf:type schema:PropertyValue
88 N3394fc9981f84e0581546de7990a1b8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Sequence Analysis, DNA
90 rdf:type schema:DefinedTerm
91 N3c8fda04ed9b41008050a13119fb29d2 schema:name doi
92 schema:value 10.1186/gb-2011-12-11-r112
93 rdf:type schema:PropertyValue
94 N57089a1a469a4f82a362af982da0d7c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Artifacts
96 rdf:type schema:DefinedTerm
97 N6a20348f0dda4420b6393b51bfc4d126 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Sequence Deletion
99 rdf:type schema:DefinedTerm
100 N70168892290e4b9280be473ba2316e68 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N808bb29a58af4c5691ea8af3b8ba4d35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Base Sequence
104 rdf:type schema:DefinedTerm
105 N80ec8b0332fc4f2e9511380cce46d660 schema:volumeNumber 12
106 rdf:type schema:PublicationVolume
107 N8f88cde0d03041079ddaf715d264ed99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Arabidopsis
109 rdf:type schema:DefinedTerm
110 N99a35764d2334f679d9e10830f53d4e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Genomics
112 rdf:type schema:DefinedTerm
113 N9af7a675fbad469b8423ff7b80cfb1d0 schema:issueNumber 11
114 rdf:type schema:PublicationIssue
115 Na16b497167514406b82ee31d1ed835ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name High-Throughput Nucleotide Sequencing
117 rdf:type schema:DefinedTerm
118 Na27e2ca5b51c4dc59f26354e8b320bdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Mutagenesis, Insertional
120 rdf:type schema:DefinedTerm
121 Nb35a678953844188b6344e82d679f548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Polymorphism, Genetic
123 rdf:type schema:DefinedTerm
124 Ncc5c41230a844b46a1fc56a13e38635a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Sensitivity and Specificity
126 rdf:type schema:DefinedTerm
127 Nce944734fdea452f9195165c26f67607 schema:name pubmed_id
128 schema:value 22067484
129 rdf:type schema:PropertyValue
130 Ne61c689c67734aa7b607f24b56c3c996 rdf:first sg:person.0643042060.33
131 rdf:rest Nf39d06f4975d4b7c8bbb961d267e445a
132 Nf39d06f4975d4b7c8bbb961d267e445a rdf:first sg:person.01076010777.50
133 rdf:rest N215ee3b8dca64536a1157c7d9aa8f010
134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biological Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
138 schema:name Genetics
139 rdf:type schema:DefinedTerm
140 sg:journal.1023439 schema:issn 1465-6906
141 1474-760X
142 schema:name Genome Biology
143 rdf:type schema:Periodical
144 sg:person.01076010777.50 schema:affiliation https://www.grid.ac/institutes/grid.11478.3b
145 schema:familyName Dohm
146 schema:givenName Juliane C
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076010777.50
148 rdf:type schema:Person
149 sg:person.0643042060.33 schema:affiliation https://www.grid.ac/institutes/grid.11478.3b
150 schema:familyName Minoche
151 schema:givenName André E
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643042060.33
153 rdf:type schema:Person
154 sg:person.0663101302.91 schema:affiliation https://www.grid.ac/institutes/grid.11478.3b
155 schema:familyName Himmelbauer
156 schema:givenName Heinz
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663101302.91
158 rdf:type schema:Person
159 sg:pub.10.1038/35048692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298669
160 https://doi.org/10.1038/35048692
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
163 https://doi.org/10.1038/nature07517
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773338
166 https://doi.org/10.1038/nmeth.1179
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nmeth.1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023653905
169 https://doi.org/10.1038/nmeth.1311
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nrg2986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016983398
172 https://doi.org/10.1038/nrg2986
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
175 https://doi.org/10.1186/gb-2009-10-3-r25
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/gb-2011-12-2-r18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000268052
178 https://doi.org/10.1186/gb-2011-12-2-r18
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1077603669 schema:CreativeWork
181 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/btp666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028265307
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gkn425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990606
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/nar/gkr344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624779
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1101/gr.089151.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020733882
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1365-313x.2008.03665.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013283092
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.11478.3b schema:alternateName Centre for Genomic Regulation
194 schema:name Centre for Genomic Regulation (CRG) and UPF, C. Dr. Aiguader 88, 08003, Barcelona, Spain
195 Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...