Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-11

AUTHORS

André E Minoche, Juliane C Dohm, Heinz Himmelbauer

ABSTRACT

BACKGROUND: The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. RESULTS: We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range. CONCLUSIONS: The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms. More... »

PAGES

r112

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112

DOI

http://dx.doi.org/10.1186/gb-2011-12-11-r112

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027516867

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22067484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation, Laboratory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteriophage phi X 174", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Beta vulgaris", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis, Insertional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Deletion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Genomic Regulation", 
          "id": "https://www.grid.ac/institutes/grid.11478.3b", 
          "name": [
            "Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany", 
            "Centre for Genomic Regulation (CRG) and UPF, C. Dr. Aiguader 88, 08003, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minoche", 
        "givenName": "Andr\u00e9 E", 
        "id": "sg:person.0643042060.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643042060.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Genomic Regulation", 
          "id": "https://www.grid.ac/institutes/grid.11478.3b", 
          "name": [
            "Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany", 
            "Centre for Genomic Regulation (CRG) and UPF, C. Dr. Aiguader 88, 08003, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dohm", 
        "givenName": "Juliane C", 
        "id": "sg:person.01076010777.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076010777.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Genomic Regulation", 
          "id": "https://www.grid.ac/institutes/grid.11478.3b", 
          "name": [
            "Centre for Genomic Regulation (CRG) and UPF, C. Dr. Aiguader 88, 08003, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Himmelbauer", 
        "givenName": "Heinz", 
        "id": "sg:person.0663101302.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663101302.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2011-12-2-r18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000268052", 
          "https://doi.org/10.1186/gb-2011-12-2-r18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001773338", 
          "https://doi.org/10.1038/nmeth.1179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2008.03665.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013283092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016983398", 
          "https://doi.org/10.1038/nrg2986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.089151.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020733882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023653905", 
          "https://doi.org/10.1038/nmeth.1311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028265307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044298669", 
          "https://doi.org/10.1038/35048692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044298669", 
          "https://doi.org/10.1038/35048692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049624779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077603669", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-11", 
    "datePublishedReg": "2011-11-01", 
    "description": "BACKGROUND: The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases.\nRESULTS: We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range.\nCONCLUSIONS: The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2011-12-11-r112", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems", 
    "pagination": "r112", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83153f19be6861e11aab2be59da8889f6250a243af63e04530704199da9624fb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22067484"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2011-12-11-r112"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027516867"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2011-12-11-r112", 
      "https://app.dimensions.ai/details/publication/pub.1027516867"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2011-12-11-r112"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2011-12-11-r112'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      59 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2011-12-11-r112 schema:about N06d80bc4209142e5b133b2ac5cb489ce
2 N17596433b3ad4e06ba73fcb81a4e714c
3 N1af2de7f488c4be0aed3b4453a164eac
4 N2597bfd8f21643f08a40d59460465488
5 N27431a1c177f411184636def8f84e668
6 N31f3487b21004ff39071c63c5dd8f72c
7 N49cb1612c03442deb320e320c9116eb4
8 N571b19fa9f0a4159be662e1917232404
9 N5fbd848bc34e45249450568fc85bb30b
10 N609a2192326544588b315e6834998e33
11 N6ca331cc8b1a4ff69089d23cf5b2615f
12 N8d8a3677172b4acfa1dccc0a713317e3
13 Nc1f95fef6f294cec8745e9078ac11ac8
14 Ne04f1ad9a0de4bd7a790f2a79dcba3d8
15 Ne743f5249fb5431e9efa3213285d9fcc
16 Nef1ce26486c94ad2b9216ef0c88025c7
17 anzsrc-for:06
18 anzsrc-for:0604
19 schema:author N4d4fab9c55c4451098cc8a421454ba20
20 schema:citation sg:pub.10.1038/35048692
21 sg:pub.10.1038/nature07517
22 sg:pub.10.1038/nmeth.1179
23 sg:pub.10.1038/nmeth.1311
24 sg:pub.10.1038/nrg2986
25 sg:pub.10.1186/gb-2009-10-3-r25
26 sg:pub.10.1186/gb-2011-12-2-r18
27 https://app.dimensions.ai/details/publication/pub.1077603669
28 https://doi.org/10.1093/bioinformatics/btp324
29 https://doi.org/10.1093/bioinformatics/btp666
30 https://doi.org/10.1093/nar/gkn425
31 https://doi.org/10.1093/nar/gkr344
32 https://doi.org/10.1101/gr.089151.108
33 https://doi.org/10.1111/j.1365-313x.2008.03665.x
34 schema:datePublished 2011-11
35 schema:datePublishedReg 2011-11-01
36 schema:description BACKGROUND: The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. RESULTS: We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range. CONCLUSIONS: The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N3ce385e613fd47a784f23d74aa5a13fb
41 Nbce561ac69a94e2a98c57134a4cbb378
42 sg:journal.1023439
43 schema:name Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems
44 schema:pagination r112
45 schema:productId N25584b2f8da1499989a46c82887edb62
46 N2815c618b849427e87b108e6dff5ff3c
47 N377049a23ea6415f958b9f03bb62eb82
48 Nde4d5604b97d41ee8cabc64f26a27d44
49 Ne046bc6d6afa48f982c166cee5d0485d
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516867
51 https://doi.org/10.1186/gb-2011-12-11-r112
52 schema:sdDatePublished 2019-04-10T13:17
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N05244c92b62243a8902c3583a3b65d8c
55 schema:url http://link.springer.com/10.1186%2Fgb-2011-12-11-r112
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N05244c92b62243a8902c3583a3b65d8c schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N06d80bc4209142e5b133b2ac5cb489ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Arabidopsis
63 rdf:type schema:DefinedTerm
64 N17596433b3ad4e06ba73fcb81a4e714c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Bacteriophage phi X 174
66 rdf:type schema:DefinedTerm
67 N1af2de7f488c4be0aed3b4453a164eac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Genomics
69 rdf:type schema:DefinedTerm
70 N25584b2f8da1499989a46c82887edb62 schema:name readcube_id
71 schema:value 83153f19be6861e11aab2be59da8889f6250a243af63e04530704199da9624fb
72 rdf:type schema:PropertyValue
73 N2597bfd8f21643f08a40d59460465488 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Beta vulgaris
75 rdf:type schema:DefinedTerm
76 N27431a1c177f411184636def8f84e668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Mutagenesis, Insertional
78 rdf:type schema:DefinedTerm
79 N2815c618b849427e87b108e6dff5ff3c schema:name pubmed_id
80 schema:value 22067484
81 rdf:type schema:PropertyValue
82 N31f3487b21004ff39071c63c5dd8f72c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Base Sequence
84 rdf:type schema:DefinedTerm
85 N377049a23ea6415f958b9f03bb62eb82 schema:name dimensions_id
86 schema:value pub.1027516867
87 rdf:type schema:PropertyValue
88 N3ce385e613fd47a784f23d74aa5a13fb schema:volumeNumber 12
89 rdf:type schema:PublicationVolume
90 N49cb1612c03442deb320e320c9116eb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Sequence Deletion
92 rdf:type schema:DefinedTerm
93 N4d4fab9c55c4451098cc8a421454ba20 rdf:first sg:person.0643042060.33
94 rdf:rest Nb9468225fb334624b6874423b09d635a
95 N571b19fa9f0a4159be662e1917232404 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Reproducibility of Results
97 rdf:type schema:DefinedTerm
98 N5fbd848bc34e45249450568fc85bb30b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name High-Throughput Nucleotide Sequencing
100 rdf:type schema:DefinedTerm
101 N609a2192326544588b315e6834998e33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Automation, Laboratory
103 rdf:type schema:DefinedTerm
104 N6ca331cc8b1a4ff69089d23cf5b2615f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Artifacts
106 rdf:type schema:DefinedTerm
107 N8d8a3677172b4acfa1dccc0a713317e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Sensitivity and Specificity
109 rdf:type schema:DefinedTerm
110 Naf357246b7bf4c1da9c4800b56aff2ba rdf:first sg:person.0663101302.91
111 rdf:rest rdf:nil
112 Nb9468225fb334624b6874423b09d635a rdf:first sg:person.01076010777.50
113 rdf:rest Naf357246b7bf4c1da9c4800b56aff2ba
114 Nbce561ac69a94e2a98c57134a4cbb378 schema:issueNumber 11
115 rdf:type schema:PublicationIssue
116 Nc1f95fef6f294cec8745e9078ac11ac8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Sequence Analysis, DNA
118 rdf:type schema:DefinedTerm
119 Nde4d5604b97d41ee8cabc64f26a27d44 schema:name nlm_unique_id
120 schema:value 100960660
121 rdf:type schema:PropertyValue
122 Ne046bc6d6afa48f982c166cee5d0485d schema:name doi
123 schema:value 10.1186/gb-2011-12-11-r112
124 rdf:type schema:PropertyValue
125 Ne04f1ad9a0de4bd7a790f2a79dcba3d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Polymorphism, Genetic
127 rdf:type schema:DefinedTerm
128 Ne743f5249fb5431e9efa3213285d9fcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Molecular Sequence Data
130 rdf:type schema:DefinedTerm
131 Nef1ce26486c94ad2b9216ef0c88025c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Base Composition
133 rdf:type schema:DefinedTerm
134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biological Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
138 schema:name Genetics
139 rdf:type schema:DefinedTerm
140 sg:journal.1023439 schema:issn 1465-6906
141 1474-760X
142 schema:name Genome Biology
143 rdf:type schema:Periodical
144 sg:person.01076010777.50 schema:affiliation https://www.grid.ac/institutes/grid.11478.3b
145 schema:familyName Dohm
146 schema:givenName Juliane C
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076010777.50
148 rdf:type schema:Person
149 sg:person.0643042060.33 schema:affiliation https://www.grid.ac/institutes/grid.11478.3b
150 schema:familyName Minoche
151 schema:givenName André E
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643042060.33
153 rdf:type schema:Person
154 sg:person.0663101302.91 schema:affiliation https://www.grid.ac/institutes/grid.11478.3b
155 schema:familyName Himmelbauer
156 schema:givenName Heinz
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663101302.91
158 rdf:type schema:Person
159 sg:pub.10.1038/35048692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298669
160 https://doi.org/10.1038/35048692
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
163 https://doi.org/10.1038/nature07517
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773338
166 https://doi.org/10.1038/nmeth.1179
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nmeth.1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023653905
169 https://doi.org/10.1038/nmeth.1311
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nrg2986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016983398
172 https://doi.org/10.1038/nrg2986
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
175 https://doi.org/10.1186/gb-2009-10-3-r25
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/gb-2011-12-2-r18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000268052
178 https://doi.org/10.1186/gb-2011-12-2-r18
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1077603669 schema:CreativeWork
181 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/btp666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028265307
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gkn425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990606
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/nar/gkr344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624779
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1101/gr.089151.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020733882
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1365-313x.2008.03665.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013283092
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.11478.3b schema:alternateName Centre for Genomic Regulation
194 schema:name Centre for Genomic Regulation (CRG) and UPF, C. Dr. Aiguader 88, 08003, Barcelona, Spain
195 Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...