A scaling normalization method for differential expression analysis of RNA-seq data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03-02

AUTHORS

Mark D Robinson, Alicia Oshlack

ABSTRACT

The fine detail provided by sequencing-based transcriptome surveys suggests that RNA-seq is likely to become the platform of choice for interrogating steady state RNA. In order to discover biologically important changes in expression, we show that normalization continues to be an essential step in the analysis. We outline a simple and effective method for performing normalization and show dramatically improved results for inferring differential expression in simulated and publicly available data sets. More... »

PAGES

r25

Journal

TITLE

Genome Biology

ISSUE

3

VOLUME

11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2010-11-3-r25

DOI

http://dx.doi.org/10.1186/gb-2010-11-3-r25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050509557

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20196867


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Epigenetics Laboratory, Cancer Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia", 
          "id": "http://www.grid.ac/institutes/grid.415306.5", 
          "name": [
            "Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia", 
            "Epigenetics Laboratory, Cancer Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robinson", 
        "givenName": "Mark D", 
        "id": "sg:person.01161667677.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161667677.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1042.7", 
          "name": [
            "Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oshlack", 
        "givenName": "Alicia", 
        "id": "sg:person.01033211040.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033211040.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt.1518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052955805", 
          "https://doi.org/10.1038/nbt.1518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029002744", 
          "https://doi.org/10.1038/nature07509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013588134", 
          "https://doi.org/10.1186/1471-2105-5-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048586936", 
          "https://doi.org/10.1038/nmeth.1223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687647", 
          "https://doi.org/10.1038/nrg2484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045381177", 
          "https://doi.org/10.1038/nmeth.1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6754-9_1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000708121", 
          "https://doi.org/10.1007/978-1-4020-6754-9_1773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-1-r2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036470625", 
          "https://doi.org/10.1186/gb-2007-8-1-r2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-7-r79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037143128", 
          "https://doi.org/10.1186/gb-2009-10-7-r79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-4-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045373440", 
          "https://doi.org/10.1186/1745-6150-4-14"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03-02", 
    "datePublishedReg": "2010-03-02", 
    "description": "The fine detail provided by sequencing-based transcriptome surveys suggests that RNA-seq is likely to become the platform of choice for interrogating steady state RNA. In order to discover biologically important changes in expression, we show that normalization continues to be an essential step in the analysis. We outline a simple and effective method for performing normalization and show dramatically improved results for inferring differential expression in simulated and publicly available data sets.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6729419", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6716773", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "available data sets", 
      "data sets", 
      "fine details", 
      "platform of choice", 
      "normalization method", 
      "differential expression analysis", 
      "set", 
      "detail", 
      "order", 
      "essential step", 
      "analysis", 
      "RNA-seq data", 
      "effective method", 
      "normalization", 
      "step", 
      "choice", 
      "results", 
      "data", 
      "expression", 
      "platform", 
      "differential expression", 
      "survey", 
      "important changes", 
      "expression analysis", 
      "RNA-seq", 
      "changes", 
      "steady-state RNA", 
      "RNA", 
      "method", 
      "transcriptome survey"
    ], 
    "name": "A scaling normalization method for differential expression analysis of RNA-seq data", 
    "pagination": "r25", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050509557"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2010-11-3-r25"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20196867"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2010-11-3-r25", 
      "https://app.dimensions.ai/details/publication/pub.1050509557"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/gb-2010-11-3-r25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-3-r25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-3-r25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-3-r25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-3-r25'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      72 URIs      53 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2010-11-3-r25 schema:about N0176a02c0cfa43389206a6880503c068
2 N11892939d53146e6818202aaed500441
3 N636222be094a4517bf5ac728f04c9254
4 N8249d1c1a4c44a44a25d9d9ef2f53b76
5 Nba2b1401344544e69e714328e71a7c6e
6 Ncd32942ffa5a43548b0b8164fad839f3
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author N1a12efea7ea449359ac7c23c6839a52d
10 schema:citation sg:pub.10.1007/978-1-4020-6754-9_1773
11 sg:pub.10.1038/nature07509
12 sg:pub.10.1038/nbt.1518
13 sg:pub.10.1038/nmeth.1223
14 sg:pub.10.1038/nmeth.1226
15 sg:pub.10.1038/nrg2484
16 sg:pub.10.1186/1471-2105-5-119
17 sg:pub.10.1186/1745-6150-4-14
18 sg:pub.10.1186/gb-2004-5-10-r80
19 sg:pub.10.1186/gb-2007-8-1-r2
20 sg:pub.10.1186/gb-2009-10-7-r79
21 schema:datePublished 2010-03-02
22 schema:datePublishedReg 2010-03-02
23 schema:description The fine detail provided by sequencing-based transcriptome surveys suggests that RNA-seq is likely to become the platform of choice for interrogating steady state RNA. In order to discover biologically important changes in expression, we show that normalization continues to be an essential step in the analysis. We outline a simple and effective method for performing normalization and show dramatically improved results for inferring differential expression in simulated and publicly available data sets.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N4b8d1fdb8de0450ea64782db7e609ee2
27 N51193598cfa548c897c117140a60ad31
28 sg:journal.1023439
29 schema:keywords RNA
30 RNA-seq
31 RNA-seq data
32 analysis
33 available data sets
34 changes
35 choice
36 data
37 data sets
38 detail
39 differential expression
40 differential expression analysis
41 effective method
42 essential step
43 expression
44 expression analysis
45 fine details
46 important changes
47 method
48 normalization
49 normalization method
50 order
51 platform
52 platform of choice
53 results
54 set
55 steady-state RNA
56 step
57 survey
58 transcriptome survey
59 schema:name A scaling normalization method for differential expression analysis of RNA-seq data
60 schema:pagination r25
61 schema:productId N69f565676abb43d68473d788fdf24abb
62 Nafde8070a09a4c2a82c5e9a3e3fefd43
63 Nfeb306da07e24e8a90e715ddb8b7a2d5
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
65 https://doi.org/10.1186/gb-2010-11-3-r25
66 schema:sdDatePublished 2022-08-04T16:59
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Ne01078b5688047d6a338a1cb1315783b
69 schema:url https://doi.org/10.1186/gb-2010-11-3-r25
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0176a02c0cfa43389206a6880503c068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Gene Expression Profiling
75 rdf:type schema:DefinedTerm
76 N11892939d53146e6818202aaed500441 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Gene Library
78 rdf:type schema:DefinedTerm
79 N1a12efea7ea449359ac7c23c6839a52d rdf:first sg:person.01161667677.19
80 rdf:rest N813ec6415113458186252e6201377e13
81 N4b8d1fdb8de0450ea64782db7e609ee2 schema:issueNumber 3
82 rdf:type schema:PublicationIssue
83 N51193598cfa548c897c117140a60ad31 schema:volumeNumber 11
84 rdf:type schema:PublicationVolume
85 N636222be094a4517bf5ac728f04c9254 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Models, Statistical
87 rdf:type schema:DefinedTerm
88 N69f565676abb43d68473d788fdf24abb schema:name doi
89 schema:value 10.1186/gb-2010-11-3-r25
90 rdf:type schema:PropertyValue
91 N813ec6415113458186252e6201377e13 rdf:first sg:person.01033211040.61
92 rdf:rest rdf:nil
93 N8249d1c1a4c44a44a25d9d9ef2f53b76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Computer Simulation
95 rdf:type schema:DefinedTerm
96 Nafde8070a09a4c2a82c5e9a3e3fefd43 schema:name dimensions_id
97 schema:value pub.1050509557
98 rdf:type schema:PropertyValue
99 Nba2b1401344544e69e714328e71a7c6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name RNA
101 rdf:type schema:DefinedTerm
102 Ncd32942ffa5a43548b0b8164fad839f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Base Sequence
104 rdf:type schema:DefinedTerm
105 Ne01078b5688047d6a338a1cb1315783b schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nfeb306da07e24e8a90e715ddb8b7a2d5 schema:name pubmed_id
108 schema:value 20196867
109 rdf:type schema:PropertyValue
110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biological Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
114 schema:name Genetics
115 rdf:type schema:DefinedTerm
116 sg:grant.6716773 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2010-11-3-r25
117 rdf:type schema:MonetaryGrant
118 sg:grant.6729419 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2010-11-3-r25
119 rdf:type schema:MonetaryGrant
120 sg:journal.1023439 schema:issn 1465-6906
121 1474-760X
122 schema:name Genome Biology
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.01033211040.61 schema:affiliation grid-institutes:grid.1042.7
126 schema:familyName Oshlack
127 schema:givenName Alicia
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033211040.61
129 rdf:type schema:Person
130 sg:person.01161667677.19 schema:affiliation grid-institutes:grid.415306.5
131 schema:familyName Robinson
132 schema:givenName Mark D
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161667677.19
134 rdf:type schema:Person
135 sg:pub.10.1007/978-1-4020-6754-9_1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000708121
136 https://doi.org/10.1007/978-1-4020-6754-9_1773
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature07509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029002744
139 https://doi.org/10.1038/nature07509
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nbt.1518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052955805
142 https://doi.org/10.1038/nbt.1518
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nmeth.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586936
145 https://doi.org/10.1038/nmeth.1223
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
148 https://doi.org/10.1038/nmeth.1226
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
151 https://doi.org/10.1038/nrg2484
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/1471-2105-5-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013588134
154 https://doi.org/10.1186/1471-2105-5-119
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/1745-6150-4-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045373440
157 https://doi.org/10.1186/1745-6150-4-14
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
160 https://doi.org/10.1186/gb-2004-5-10-r80
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/gb-2007-8-1-r2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036470625
163 https://doi.org/10.1186/gb-2007-8-1-r2
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/gb-2009-10-7-r79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037143128
166 https://doi.org/10.1186/gb-2009-10-7-r79
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.1042.7 schema:alternateName Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
169 schema:name Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
170 rdf:type schema:Organization
171 grid-institutes:grid.415306.5 schema:alternateName Epigenetics Laboratory, Cancer Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
172 schema:name Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
173 Epigenetics Laboratory, Cancer Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...