Gene ontology analysis for RNA-seq: accounting for selection bias View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-02

AUTHORS

Matthew D Young, Matthew J Wakefield, Gordon K Smyth, Alicia Oshlack

ABSTRACT

We present GOseq, an application for performing Gene Ontology (GO) analysis on RNA-seq data. GO analysis is widely used to reduce complexity and highlight biological processes in genome-wide expression studies, but standard methods give biased results on RNA-seq data due to over-detection of differential expression for long and highly expressed transcripts. Application of GOseq to a prostate cancer data set shows that GOseq dramatically changes the results, highlighting categories more consistent with the known biology. More... »

PAGES

r14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2010-11-2-r14

DOI

http://dx.doi.org/10.1186/gb-2010-11-2-r14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050171830

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20132535


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Androgens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Walter and Eliza Hall Institute of Medical Research", 
          "id": "https://www.grid.ac/institutes/grid.1042.7", 
          "name": [
            "Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052, Parkville, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Young", 
        "givenName": "Matthew D", 
        "id": "sg:person.01261133021.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261133021.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Walter and Eliza Hall Institute of Medical Research", 
          "id": "https://www.grid.ac/institutes/grid.1042.7", 
          "name": [
            "Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052, Parkville, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wakefield", 
        "givenName": "Matthew J", 
        "id": "sg:person.0663210100.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663210100.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Walter and Eliza Hall Institute of Medical Research", 
          "id": "https://www.grid.ac/institutes/grid.1042.7", 
          "name": [
            "Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052, Parkville, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smyth", 
        "givenName": "Gordon K", 
        "id": "sg:person.0665226271.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665226271.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Walter and Eliza Hall Institute of Medical Research", 
          "id": "https://www.grid.ac/institutes/grid.1042.7", 
          "name": [
            "Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052, Parkville, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oshlack", 
        "givenName": "Alicia", 
        "id": "sg:person.01033211040.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033211040.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0003839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005863644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007096305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipl.2005.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010178790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014058978", 
          "https://doi.org/10.1186/gb-2002-3-7-research0032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0807121105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014504061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-4-r28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017134389", 
          "https://doi.org/10.1186/gb-2003-4-4-r28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxm030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019122906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.089409.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019759093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022171874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025432622", 
          "https://doi.org/10.1007/0-387-29362-0_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-8-246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027078608", 
          "https://doi.org/10.1186/1471-2164-8-246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029002744", 
          "https://doi.org/10.1038/nature07509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-12-r101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030306020", 
          "https://doi.org/10.1186/gb-2004-5-12-r101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033153673", 
          "https://doi.org/10.1186/1471-2164-10-161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033741877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036891129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35094009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041216924", 
          "https://doi.org/10.1038/35094009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35094009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041216924", 
          "https://doi.org/10.1038/35094009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-4-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045373440", 
          "https://doi.org/10.1186/1745-6150-4-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045381177", 
          "https://doi.org/10.1038/nmeth.1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.079558.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045837493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050509557", 
          "https://doi.org/10.1186/gb-2010-11-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077603669", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-02", 
    "datePublishedReg": "2010-02-01", 
    "description": "We present GOseq, an application for performing Gene Ontology (GO) analysis on RNA-seq data. GO analysis is widely used to reduce complexity and highlight biological processes in genome-wide expression studies, but standard methods give biased results on RNA-seq data due to over-detection of differential expression for long and highly expressed transcripts. Application of GOseq to a prostate cancer data set shows that GOseq dramatically changes the results, highlighting categories more consistent with the known biology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2010-11-2-r14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Gene ontology analysis for RNA-seq: accounting for selection bias", 
    "pagination": "r14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef011c3977b1f5d79f4b051ac2ebe5310748c1d0d392fd77c8db989281e1ae45"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20132535"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2010-11-2-r14"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050171830"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2010-11-2-r14", 
      "https://app.dimensions.ai/details/publication/pub.1050171830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2010-11-2-r14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-2-r14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-2-r14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-2-r14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-2-r14'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      65 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2010-11-2-r14 schema:about N145745d7df524e2c87bb4c52d6b585b7
2 N17b28b94a38a4e0687cd140548a4c05b
3 N19f23bbfa00d434186fab4a650388005
4 N3a0269baaf744ad3823f215724f12e68
5 N5e210b9d1f4142a191a2883ee1ddd2b6
6 N942f25fa8f714bc2bb2f51d10b011a3c
7 N9dbb2bd0675d4c488ab647b0624fb688
8 Nba53b8c388b44a3dbe9deed0eadf7c94
9 Nf5e8607e3d4c47c484148dcdf6f8909d
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author Nf462de70543d40f68f5828cb3edef23e
13 schema:citation sg:pub.10.1007/0-387-29362-0_23
14 sg:pub.10.1038/35094009
15 sg:pub.10.1038/75556
16 sg:pub.10.1038/nature07509
17 sg:pub.10.1038/nmeth.1226
18 sg:pub.10.1038/nprot.2008.211
19 sg:pub.10.1186/1471-2164-10-161
20 sg:pub.10.1186/1471-2164-8-246
21 sg:pub.10.1186/1745-6150-4-14
22 sg:pub.10.1186/gb-2002-3-7-research0032
23 sg:pub.10.1186/gb-2003-4-4-r28
24 sg:pub.10.1186/gb-2004-5-12-r101
25 sg:pub.10.1186/gb-2009-10-3-r25
26 sg:pub.10.1186/gb-2010-11-3-r25
27 https://app.dimensions.ai/details/publication/pub.1077603669
28 https://doi.org/10.1016/j.ipl.2005.11.003
29 https://doi.org/10.1073/pnas.0506580102
30 https://doi.org/10.1073/pnas.0807121105
31 https://doi.org/10.1093/bioinformatics/bth088
32 https://doi.org/10.1093/bioinformatics/btl140
33 https://doi.org/10.1093/bioinformatics/btm453
34 https://doi.org/10.1093/bioinformatics/btp616
35 https://doi.org/10.1093/biostatistics/kxm030
36 https://doi.org/10.1093/nar/gkn705
37 https://doi.org/10.1101/gr.079558.108
38 https://doi.org/10.1101/gr.089409.108
39 https://doi.org/10.1371/journal.pone.0003839
40 schema:datePublished 2010-02
41 schema:datePublishedReg 2010-02-01
42 schema:description We present GOseq, an application for performing Gene Ontology (GO) analysis on RNA-seq data. GO analysis is widely used to reduce complexity and highlight biological processes in genome-wide expression studies, but standard methods give biased results on RNA-seq data due to over-detection of differential expression for long and highly expressed transcripts. Application of GOseq to a prostate cancer data set shows that GOseq dramatically changes the results, highlighting categories more consistent with the known biology.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N3e5bbdd5ef7e4e5790f9eefea3f39b4f
47 N6ad9d6ea553d45ca9dce258cd1d56ba5
48 sg:journal.1023439
49 schema:name Gene ontology analysis for RNA-seq: accounting for selection bias
50 schema:pagination r14
51 schema:productId N2a887801721240aea5343f82aba3916d
52 N7b6b7ca3a4d94c4ab08acede45c66c74
53 N82e1f32ada7d48e7b65487364a02af76
54 Nc0ac58b45b034905a1fdba5b408c8d37
55 Nc9abab245b8f4f0197581865bfba958a
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050171830
57 https://doi.org/10.1186/gb-2010-11-2-r14
58 schema:sdDatePublished 2019-04-10T19:09
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nf8374defacc1442891a6de46d2351f4e
61 schema:url http://link.springer.com/10.1186%2Fgb-2010-11-2-r14
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N12fd6a698810442ca64fafc18fdd705c rdf:first sg:person.0663210100.61
66 rdf:rest N64774a90ffda4f24aeba2e71ed69bcea
67 N145745d7df524e2c87bb4c52d6b585b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Humans
69 rdf:type schema:DefinedTerm
70 N17b28b94a38a4e0687cd140548a4c05b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Prostatic Neoplasms
72 rdf:type schema:DefinedTerm
73 N19f23bbfa00d434186fab4a650388005 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Gene Expression Regulation, Neoplastic
75 rdf:type schema:DefinedTerm
76 N2a887801721240aea5343f82aba3916d schema:name dimensions_id
77 schema:value pub.1050171830
78 rdf:type schema:PropertyValue
79 N3a0269baaf744ad3823f215724f12e68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Male
81 rdf:type schema:DefinedTerm
82 N3e5bbdd5ef7e4e5790f9eefea3f39b4f schema:issueNumber 2
83 rdf:type schema:PublicationIssue
84 N5c8d2dd95b7b41908be29e47cc62bbcf rdf:first sg:person.01033211040.61
85 rdf:rest rdf:nil
86 N5e210b9d1f4142a191a2883ee1ddd2b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Cell Line, Tumor
88 rdf:type schema:DefinedTerm
89 N64774a90ffda4f24aeba2e71ed69bcea rdf:first sg:person.0665226271.44
90 rdf:rest N5c8d2dd95b7b41908be29e47cc62bbcf
91 N6ad9d6ea553d45ca9dce258cd1d56ba5 schema:volumeNumber 11
92 rdf:type schema:PublicationVolume
93 N7b6b7ca3a4d94c4ab08acede45c66c74 schema:name readcube_id
94 schema:value ef011c3977b1f5d79f4b051ac2ebe5310748c1d0d392fd77c8db989281e1ae45
95 rdf:type schema:PropertyValue
96 N82e1f32ada7d48e7b65487364a02af76 schema:name doi
97 schema:value 10.1186/gb-2010-11-2-r14
98 rdf:type schema:PropertyValue
99 N942f25fa8f714bc2bb2f51d10b011a3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Bias
101 rdf:type schema:DefinedTerm
102 N9dbb2bd0675d4c488ab647b0624fb688 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Genome-Wide Association Study
104 rdf:type schema:DefinedTerm
105 Nba53b8c388b44a3dbe9deed0eadf7c94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Androgens
107 rdf:type schema:DefinedTerm
108 Nc0ac58b45b034905a1fdba5b408c8d37 schema:name nlm_unique_id
109 schema:value 100960660
110 rdf:type schema:PropertyValue
111 Nc9abab245b8f4f0197581865bfba958a schema:name pubmed_id
112 schema:value 20132535
113 rdf:type schema:PropertyValue
114 Nf462de70543d40f68f5828cb3edef23e rdf:first sg:person.01261133021.21
115 rdf:rest N12fd6a698810442ca64fafc18fdd705c
116 Nf5e8607e3d4c47c484148dcdf6f8909d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Sequence Analysis, RNA
118 rdf:type schema:DefinedTerm
119 Nf8374defacc1442891a6de46d2351f4e schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
125 schema:name Genetics
126 rdf:type schema:DefinedTerm
127 sg:journal.1023439 schema:issn 1465-6906
128 1474-760X
129 schema:name Genome Biology
130 rdf:type schema:Periodical
131 sg:person.01033211040.61 schema:affiliation https://www.grid.ac/institutes/grid.1042.7
132 schema:familyName Oshlack
133 schema:givenName Alicia
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033211040.61
135 rdf:type schema:Person
136 sg:person.01261133021.21 schema:affiliation https://www.grid.ac/institutes/grid.1042.7
137 schema:familyName Young
138 schema:givenName Matthew D
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261133021.21
140 rdf:type schema:Person
141 sg:person.0663210100.61 schema:affiliation https://www.grid.ac/institutes/grid.1042.7
142 schema:familyName Wakefield
143 schema:givenName Matthew J
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663210100.61
145 rdf:type schema:Person
146 sg:person.0665226271.44 schema:affiliation https://www.grid.ac/institutes/grid.1042.7
147 schema:familyName Smyth
148 schema:givenName Gordon K
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665226271.44
150 rdf:type schema:Person
151 sg:pub.10.1007/0-387-29362-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432622
152 https://doi.org/10.1007/0-387-29362-0_23
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/35094009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041216924
155 https://doi.org/10.1038/35094009
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
158 https://doi.org/10.1038/75556
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature07509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029002744
161 https://doi.org/10.1038/nature07509
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
164 https://doi.org/10.1038/nmeth.1226
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
167 https://doi.org/10.1038/nprot.2008.211
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2164-10-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033153673
170 https://doi.org/10.1186/1471-2164-10-161
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2164-8-246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027078608
173 https://doi.org/10.1186/1471-2164-8-246
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1745-6150-4-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045373440
176 https://doi.org/10.1186/1745-6150-4-14
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/gb-2002-3-7-research0032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014058978
179 https://doi.org/10.1186/gb-2002-3-7-research0032
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/gb-2003-4-4-r28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017134389
182 https://doi.org/10.1186/gb-2003-4-4-r28
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/gb-2004-5-12-r101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030306020
185 https://doi.org/10.1186/gb-2004-5-12-r101
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
188 https://doi.org/10.1186/gb-2009-10-3-r25
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
191 https://doi.org/10.1186/gb-2010-11-3-r25
192 rdf:type schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1077603669 schema:CreativeWork
194 https://doi.org/10.1016/j.ipl.2005.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010178790
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.0807121105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014504061
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/bth088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022171874
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/btl140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033741877
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/bioinformatics/btm453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891129
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/biostatistics/kxm030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019122906
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/nar/gkn705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007096305
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1101/gr.079558.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837493
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1101/gr.089409.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019759093
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pone.0003839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005863644
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.1042.7 schema:alternateName Walter and Eliza Hall Institute of Medical Research
219 schema:name Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052, Parkville, Australia
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...