Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Gabriel Krouk, Piotr Mirowski, Yann LeCun, Dennis E Shasha, Gloria M Coruzzi

ABSTRACT

BACKGROUND: Nitrate, acting as both a nitrogen source and a signaling molecule, controls many aspects of plant development. However, gene networks involved in plant adaptation to fluctuating nitrate environments have not yet been identified. RESULTS: Here we use time-series transcriptome data to decipher gene relationships and consequently to build core regulatory networks involved in Arabidopsis root adaptation to nitrate provision. The experimental approach has been to monitor genome-wide responses to nitrate at 3, 6, 9, 12, 15 and 20 minutes using Affymetrix ATH1 gene chips. This high-resolution time course analysis demonstrated that the previously known primary nitrate response is actually preceded by a very fast gene expression modulation, involving genes and functions needed to prepare plants to use or reduce nitrate. A state-space model inferred from this microarray time-series data successfully predicts gene behavior in unlearnt conditions. CONCLUSIONS: The experiments and methods allow us to propose a temporal working model for nitrate-driven gene networks. This network model is tested both in silico and experimentally. For example, the over-expression of a predicted gene hub encoding a transcription factor induced early in the cascade indeed leads to the modification of the kinetic nitrate response of sentinel genes such as NIR, NIA2, and NRT1.1, and several other transcription factors. The potential nitrate/hormone connections implicated by this time-series data are also evaluated. More... »

PAGES

r123

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2010-11-12-r123

DOI

http://dx.doi.org/10.1186/gb-2010-11-12-r123

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010890195

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21182762


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Roots", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biochemistry and Plant Molecular Physiology", 
          "id": "https://www.grid.ac/institutes/grid.461861.c", 
          "name": [
            "Center for Genomics and Systems Biology, Department of Biology, New York University, 100 Washington Square East, 1009 Main Building, 10003, New York, NY, USA", 
            "Biochimie et Physiologie Mol\u00e9culaire des Plantes, UMR 5004 CNRS/INRA/SupAgro-M/UM2, Institut de Biologie Int\u00e9grative des Plantes, Place Viala, 34060, Montpellier, Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krouk", 
        "givenName": "Gabriel", 
        "id": "sg:person.0743647100.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743647100.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematical Sciences, New York University, 10003, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirowski", 
        "givenName": "Piotr", 
        "id": "sg:person.01242502720.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242502720.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematical Sciences, New York University, 10003, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LeCun", 
        "givenName": "Yann", 
        "id": "sg:person.0765036655.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765036655.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematical Sciences, New York University, 10003, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shasha", 
        "givenName": "Dennis E", 
        "id": "sg:person.01076746331.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076746331.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Genomics and Systems Biology, Department of Biology, New York University, 100 Washington Square East, 1009 Main Building, 10003, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coruzzi", 
        "givenName": "Gloria M", 
        "id": "sg:person.012675371174.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675371174.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1104/pp.109.147280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001081153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-008-9310-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004629180", 
          "https://doi.org/10.1007/s11103-008-9310-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.104.047019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005387725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2009.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005544646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-4-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007420903", 
          "https://doi.org/10.1186/1752-0509-4-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.4.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008331774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2008.03685.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009365492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erl269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009795452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-008-9380-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012442230", 
          "https://doi.org/10.1007/s11103-008-9380-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-3-59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015358227", 
          "https://doi.org/10.1186/1752-0509-3-59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.107.115667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015836966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016229563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erm079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016988168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2010.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017362737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.103.021253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018030782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.7.7.859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021277002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.104.044610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021947738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.109.140434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022663993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.12.8.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024756613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.109.067041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025391617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.107.114710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026933926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.05.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028205567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.104.024380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028827685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-1-r7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029186380", 
          "https://doi.org/10.1186/gb-2007-8-1-r7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.108.058180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032704958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-007-9241-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033882502", 
          "https://doi.org/10.1007/s11103-007-9241-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036183277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2009.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036269373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-5-r36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036826377", 
          "https://doi.org/10.1186/gb-2006-7-5-r36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04174-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036988045", 
          "https://doi.org/10.1007/978-3-642-04174-7_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605275103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037466874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.106.087510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038653646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0709559105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038905808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053604000000067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038945634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.109.148502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040258133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.109.139139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040266596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2009.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043069085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-3-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043811318", 
          "https://doi.org/10.1186/1752-0509-3-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00503.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043971564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043974791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2008.03695.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045312513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5349.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047668416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2008.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047989974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049598862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2009.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049797711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.10.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053008261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701752236223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3871145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070468956"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Nitrate, acting as both a nitrogen source and a signaling molecule, controls many aspects of plant development. However, gene networks involved in plant adaptation to fluctuating nitrate environments have not yet been identified.\nRESULTS: Here we use time-series transcriptome data to decipher gene relationships and consequently to build core regulatory networks involved in Arabidopsis root adaptation to nitrate provision. The experimental approach has been to monitor genome-wide responses to nitrate at 3, 6, 9, 12, 15 and 20 minutes using Affymetrix ATH1 gene chips. This high-resolution time course analysis demonstrated that the previously known primary nitrate response is actually preceded by a very fast gene expression modulation, involving genes and functions needed to prepare plants to use or reduce nitrate. A state-space model inferred from this microarray time-series data successfully predicts gene behavior in unlearnt conditions.\nCONCLUSIONS: The experiments and methods allow us to propose a temporal working model for nitrate-driven gene networks. This network model is tested both in silico and experimentally. For example, the over-expression of a predicted gene hub encoding a transcription factor induced early in the cascade indeed leads to the modification of the kinetic nitrate response of sentinel genes such as NIR, NIA2, and NRT1.1, and several other transcription factors. The potential nitrate/hormone connections implicated by this time-series data are also evaluated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2010-11-12-r123", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2510586", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3105433", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3048963", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3040941", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate", 
    "pagination": "r123", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33e226be61cce7e8219c4255e6a46e8412d4ba62ce6c3c0b023d24e1cfe2ce7b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21182762"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2010-11-12-r123"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010890195"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2010-11-12-r123", 
      "https://app.dimensions.ai/details/publication/pub.1010890195"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2010-11-12-r123"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-12-r123'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-12-r123'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-12-r123'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-12-r123'


 

This table displays all metadata directly associated to this object as RDF triples.

325 TRIPLES      21 PREDICATES      92 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2010-11-12-r123 schema:about N004e41aa97a947b0b443178598fd1921
2 N099372c172ef4c158778285b198ed3f9
3 N0c69f1409529456d9aee2694f82e465f
4 N2c3ad1b9201c4888ac32cba7f0e8ddde
5 N321ff81d3d4c4ac4af4874b280c1b25e
6 N43f6b614fa9b479d8ed8179c222d1503
7 N45a61e54f00347b68525bd5bee08ea43
8 N888b031b7b1a47a58da4c79bbc980009
9 N927ba9e8c7fb4133b5e4190d2a889523
10 N9857f293fb6245d1a07f891b00d697b3
11 Nb6b3326d81c245bea3a25ea8b9dd4aa5
12 Nda9e337a15434e82b204144be23bc81c
13 Ndaf8d6a5dac7439a9f2fd32a1f97f115
14 Ne722d1e3fecb40b5b5d2c445cf83af2d
15 Nf8e1f3a0255c4cd888683c764644dd02
16 anzsrc-for:06
17 anzsrc-for:0604
18 schema:author N19a191acf572404f9b9c069b9ba3f9bc
19 schema:citation sg:pub.10.1007/978-3-642-04174-7_9
20 sg:pub.10.1007/s11103-007-9241-0
21 sg:pub.10.1007/s11103-008-9310-z
22 sg:pub.10.1007/s11103-008-9380-y
23 sg:pub.10.1186/1752-0509-3-41
24 sg:pub.10.1186/1752-0509-3-59
25 sg:pub.10.1186/1752-0509-4-37
26 sg:pub.10.1186/gb-2006-7-5-r36
27 sg:pub.10.1186/gb-2007-8-1-r7
28 https://doi.org/10.1016/j.cell.2006.05.050
29 https://doi.org/10.1016/j.cell.2007.10.053
30 https://doi.org/10.1016/j.cell.2009.06.014
31 https://doi.org/10.1016/j.cell.2009.06.031
32 https://doi.org/10.1016/j.cell.2009.07.004
33 https://doi.org/10.1016/j.devcel.2010.05.008
34 https://doi.org/10.1016/j.pbi.2008.07.003
35 https://doi.org/10.1016/j.pbi.2009.12.003
36 https://doi.org/10.1073/pnas.0605275103
37 https://doi.org/10.1073/pnas.0709559105
38 https://doi.org/10.1089/106652701752236223
39 https://doi.org/10.1093/bioinformatics/17.4.309
40 https://doi.org/10.1093/bioinformatics/bti014
41 https://doi.org/10.1093/bioinformatics/btl396
42 https://doi.org/10.1093/bioinformatics/btp199
43 https://doi.org/10.1093/jxb/erl269
44 https://doi.org/10.1093/jxb/erm079
45 https://doi.org/10.1104/pp.103.021253
46 https://doi.org/10.1104/pp.104.044610
47 https://doi.org/10.1104/pp.104.047019
48 https://doi.org/10.1104/pp.106.087510
49 https://doi.org/10.1104/pp.107.114710
50 https://doi.org/10.1104/pp.107.115667
51 https://doi.org/10.1104/pp.109.139139
52 https://doi.org/10.1104/pp.109.140434
53 https://doi.org/10.1104/pp.109.147280
54 https://doi.org/10.1104/pp.109.148502
55 https://doi.org/10.1105/tpc.104.024380
56 https://doi.org/10.1105/tpc.108.058180
57 https://doi.org/10.1105/tpc.109.067041
58 https://doi.org/10.1105/tpc.12.8.1491
59 https://doi.org/10.1105/tpc.7.7.859
60 https://doi.org/10.1111/j.1365-313x.2008.03685.x
61 https://doi.org/10.1111/j.1365-313x.2008.03695.x
62 https://doi.org/10.1111/j.1467-9868.2005.00503.x
63 https://doi.org/10.1126/science.279.5349.407
64 https://doi.org/10.1214/009053604000000067
65 https://doi.org/10.1371/journal.pcbi.1000326
66 https://doi.org/10.2307/3871145
67 schema:datePublished 2010-12
68 schema:datePublishedReg 2010-12-01
69 schema:description BACKGROUND: Nitrate, acting as both a nitrogen source and a signaling molecule, controls many aspects of plant development. However, gene networks involved in plant adaptation to fluctuating nitrate environments have not yet been identified. RESULTS: Here we use time-series transcriptome data to decipher gene relationships and consequently to build core regulatory networks involved in Arabidopsis root adaptation to nitrate provision. The experimental approach has been to monitor genome-wide responses to nitrate at 3, 6, 9, 12, 15 and 20 minutes using Affymetrix ATH1 gene chips. This high-resolution time course analysis demonstrated that the previously known primary nitrate response is actually preceded by a very fast gene expression modulation, involving genes and functions needed to prepare plants to use or reduce nitrate. A state-space model inferred from this microarray time-series data successfully predicts gene behavior in unlearnt conditions. CONCLUSIONS: The experiments and methods allow us to propose a temporal working model for nitrate-driven gene networks. This network model is tested both in silico and experimentally. For example, the over-expression of a predicted gene hub encoding a transcription factor induced early in the cascade indeed leads to the modification of the kinetic nitrate response of sentinel genes such as NIR, NIA2, and NRT1.1, and several other transcription factors. The potential nitrate/hormone connections implicated by this time-series data are also evaluated.
70 schema:genre research_article
71 schema:inLanguage en
72 schema:isAccessibleForFree true
73 schema:isPartOf N2970fde2e5534ef4b035c4139a04b49b
74 N435e87366a4c40fe99632b5f3548ae3a
75 sg:journal.1023439
76 schema:name Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate
77 schema:pagination r123
78 schema:productId N8ee030566fc14cd79d77a3df930e9bbd
79 Na37f9ed9b6124e76abe12ba0d6e9a4d9
80 Nd42340e0c77d491fb306db0f67e9f497
81 Nf477ee53e13f4fd7b8bc06f2072ef931
82 Nf5756754836347ad8cb9127fc3a08668
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010890195
84 https://doi.org/10.1186/gb-2010-11-12-r123
85 schema:sdDatePublished 2019-04-10T15:00
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N52eec7e3d42d4f76bd6cdeb455c99bd1
88 schema:url http://link.springer.com/10.1186%2Fgb-2010-11-12-r123
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N004e41aa97a947b0b443178598fd1921 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Oligonucleotide Array Sequence Analysis
94 rdf:type schema:DefinedTerm
95 N099372c172ef4c158778285b198ed3f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Systems Biology
97 rdf:type schema:DefinedTerm
98 N0c69f1409529456d9aee2694f82e465f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Models, Genetic
100 rdf:type schema:DefinedTerm
101 N19a191acf572404f9b9c069b9ba3f9bc rdf:first sg:person.0743647100.43
102 rdf:rest Na723bef0affb4ba2a822a3230132f9e1
103 N2970fde2e5534ef4b035c4139a04b49b schema:issueNumber 12
104 rdf:type schema:PublicationIssue
105 N2c3ad1b9201c4888ac32cba7f0e8ddde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Arabidopsis
107 rdf:type schema:DefinedTerm
108 N321ff81d3d4c4ac4af4874b280c1b25e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Plant Roots
110 rdf:type schema:DefinedTerm
111 N435e87366a4c40fe99632b5f3548ae3a schema:volumeNumber 11
112 rdf:type schema:PublicationVolume
113 N43f6b614fa9b479d8ed8179c222d1503 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Nitrates
115 rdf:type schema:DefinedTerm
116 N455748b7201244c3a090e27021509a2c rdf:first sg:person.01076746331.44
117 rdf:rest Nc8c5c24be64a4a9096393b07cfb89612
118 N45a61e54f00347b68525bd5bee08ea43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Gene Regulatory Networks
120 rdf:type schema:DefinedTerm
121 N52eec7e3d42d4f76bd6cdeb455c99bd1 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N888b031b7b1a47a58da4c79bbc980009 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Gene Expression Regulation, Plant
125 rdf:type schema:DefinedTerm
126 N8ee030566fc14cd79d77a3df930e9bbd schema:name dimensions_id
127 schema:value pub.1010890195
128 rdf:type schema:PropertyValue
129 N927ba9e8c7fb4133b5e4190d2a889523 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Gene Expression Profiling
131 rdf:type schema:DefinedTerm
132 N9857f293fb6245d1a07f891b00d697b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cluster Analysis
134 rdf:type schema:DefinedTerm
135 Na37f9ed9b6124e76abe12ba0d6e9a4d9 schema:name doi
136 schema:value 10.1186/gb-2010-11-12-r123
137 rdf:type schema:PropertyValue
138 Na723bef0affb4ba2a822a3230132f9e1 rdf:first sg:person.01242502720.33
139 rdf:rest Nd7a242de555f4e0d91a4cf1e5e802331
140 Nb6b3326d81c245bea3a25ea8b9dd4aa5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Transcription Factors
142 rdf:type schema:DefinedTerm
143 Nc8c5c24be64a4a9096393b07cfb89612 rdf:first sg:person.012675371174.46
144 rdf:rest rdf:nil
145 Nd42340e0c77d491fb306db0f67e9f497 schema:name nlm_unique_id
146 schema:value 100960660
147 rdf:type schema:PropertyValue
148 Nd7a242de555f4e0d91a4cf1e5e802331 rdf:first sg:person.0765036655.42
149 rdf:rest N455748b7201244c3a090e27021509a2c
150 Nda9e337a15434e82b204144be23bc81c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Nitrogen
152 rdf:type schema:DefinedTerm
153 Ndaf8d6a5dac7439a9f2fd32a1f97f115 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Genes, Plant
155 rdf:type schema:DefinedTerm
156 Ne722d1e3fecb40b5b5d2c445cf83af2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name RNA, Plant
158 rdf:type schema:DefinedTerm
159 Nf477ee53e13f4fd7b8bc06f2072ef931 schema:name readcube_id
160 schema:value 33e226be61cce7e8219c4255e6a46e8412d4ba62ce6c3c0b023d24e1cfe2ce7b
161 rdf:type schema:PropertyValue
162 Nf5756754836347ad8cb9127fc3a08668 schema:name pubmed_id
163 schema:value 21182762
164 rdf:type schema:PropertyValue
165 Nf8e1f3a0255c4cd888683c764644dd02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Adaptation, Physiological
167 rdf:type schema:DefinedTerm
168 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
169 schema:name Biological Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
172 schema:name Genetics
173 rdf:type schema:DefinedTerm
174 sg:grant.2510586 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2010-11-12-r123
175 rdf:type schema:MonetaryGrant
176 sg:grant.3040941 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2010-11-12-r123
177 rdf:type schema:MonetaryGrant
178 sg:grant.3048963 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2010-11-12-r123
179 rdf:type schema:MonetaryGrant
180 sg:grant.3105433 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2010-11-12-r123
181 rdf:type schema:MonetaryGrant
182 sg:journal.1023439 schema:issn 1465-6906
183 1474-760X
184 schema:name Genome Biology
185 rdf:type schema:Periodical
186 sg:person.01076746331.44 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
187 schema:familyName Shasha
188 schema:givenName Dennis E
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076746331.44
190 rdf:type schema:Person
191 sg:person.01242502720.33 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
192 schema:familyName Mirowski
193 schema:givenName Piotr
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242502720.33
195 rdf:type schema:Person
196 sg:person.012675371174.46 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
197 schema:familyName Coruzzi
198 schema:givenName Gloria M
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675371174.46
200 rdf:type schema:Person
201 sg:person.0743647100.43 schema:affiliation https://www.grid.ac/institutes/grid.461861.c
202 schema:familyName Krouk
203 schema:givenName Gabriel
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743647100.43
205 rdf:type schema:Person
206 sg:person.0765036655.42 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
207 schema:familyName LeCun
208 schema:givenName Yann
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765036655.42
210 rdf:type schema:Person
211 sg:pub.10.1007/978-3-642-04174-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036988045
212 https://doi.org/10.1007/978-3-642-04174-7_9
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s11103-007-9241-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033882502
215 https://doi.org/10.1007/s11103-007-9241-0
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s11103-008-9310-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004629180
218 https://doi.org/10.1007/s11103-008-9310-z
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s11103-008-9380-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012442230
221 https://doi.org/10.1007/s11103-008-9380-y
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/1752-0509-3-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043811318
224 https://doi.org/10.1186/1752-0509-3-41
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1752-0509-3-59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015358227
227 https://doi.org/10.1186/1752-0509-3-59
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/1752-0509-4-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007420903
230 https://doi.org/10.1186/1752-0509-4-37
231 rdf:type schema:CreativeWork
232 sg:pub.10.1186/gb-2006-7-5-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036826377
233 https://doi.org/10.1186/gb-2006-7-5-r36
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/gb-2007-8-1-r7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029186380
236 https://doi.org/10.1186/gb-2007-8-1-r7
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.cell.2006.05.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028205567
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.cell.2007.10.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053008261
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.cell.2009.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005544646
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.cell.2009.06.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049797711
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.cell.2009.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043069085
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.devcel.2010.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017362737
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.pbi.2008.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047989974
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.pbi.2009.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036269373
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1073/pnas.0605275103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037466874
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1073/pnas.0709559105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038905808
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1089/106652701752236223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204900
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/bioinformatics/17.4.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008331774
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/bioinformatics/bti014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043974791
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/bioinformatics/btl396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036183277
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/bioinformatics/btp199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049598862
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/jxb/erl269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009795452
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/jxb/erm079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016988168
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1104/pp.103.021253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018030782
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1104/pp.104.044610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021947738
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1104/pp.104.047019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005387725
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1104/pp.106.087510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038653646
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1104/pp.107.114710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026933926
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1104/pp.107.115667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015836966
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1104/pp.109.139139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040266596
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1104/pp.109.140434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022663993
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1104/pp.109.147280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001081153
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1104/pp.109.148502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040258133
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1105/tpc.104.024380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028827685
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1105/tpc.108.058180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032704958
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1105/tpc.109.067041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025391617
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1105/tpc.12.8.1491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024756613
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1105/tpc.7.7.859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021277002
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1111/j.1365-313x.2008.03685.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009365492
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1111/j.1365-313x.2008.03695.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045312513
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1111/j.1467-9868.2005.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043971564
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1126/science.279.5349.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047668416
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1214/009053604000000067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038945634
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1371/journal.pcbi.1000326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016229563
313 rdf:type schema:CreativeWork
314 https://doi.org/10.2307/3871145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070468956
315 rdf:type schema:CreativeWork
316 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
317 schema:name Center for Genomics and Systems Biology, Department of Biology, New York University, 100 Washington Square East, 1009 Main Building, 10003, New York, NY, USA
318 rdf:type schema:Organization
319 https://www.grid.ac/institutes/grid.461861.c schema:alternateName Biochemistry and Plant Molecular Physiology
320 schema:name Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes, Place Viala, 34060, Montpellier, Cedex, France
321 Center for Genomics and Systems Biology, Department of Biology, New York University, 100 Washington Square East, 1009 Main Building, 10003, New York, NY, USA
322 rdf:type schema:Organization
323 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
324 schema:name Courant Institute of Mathematical Sciences, New York University, 10003, New York, NY, USA
325 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...