Differential expression analysis for sequence count data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10-27

AUTHORS

Simon Anders, Wolfgang Huber

ABSTRACT

High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package. More... »

PAGES

r106

Journal

TITLE

Genome Biology

ISSUE

10

VOLUME

11

Related Patents

  • Pklr Inhibition In The Treatment Of Nafld And Hcc
  • Animal Model For Type 2 Diabetes And Obesity
  • Methods And Compositions For Predicting A Colon Cancer Subtype
  • Microbial Microfluidic Biosensor
  • Biomarkers For Cancer Therapy Using Mdm2 Antagonists
  • Transcription Activator-Like Effector (Tale) - Lysine-Specific Demethylase 1 (Lsd1) Fusion Proteins
  • Dietary Product
  • Methods, Apparatuses, And Systems For Analyzing Complete Microorganism Strains In Complex Heterogeneous Communities, Determining Functional Relationships And Interactions Thereof, And Identifying And Synthesizing Bioreactive Modificators Based Thereon
  • Microbial Microfluidic Biosensor
  • Methods, Apparatuses, And Systems For Analyzing Microorganism Strains From Complex Heterogeneous Communities, Predicting And Identifying Functional Relationships And Interactions Thereof, And Selecting And Synthesizing Microbial Ensembles Based Thereon
  • Methods Of Enhancing Health And/Or Promoting Growth Of A Plant And/Or Of Improving Fruit Ripening
  • Compositions And Methods Comprising 2-(Acylamino)Imidazoles
  • The Volume-Regulated Anion Channel Protein Lrrc8a For Use In Altering Epidermal Keratinocyte Differentiation
  • Epigenome-Wide Association Study Identifies Cardiac Developmental Gene Patterning And A Novel Class Of Biomarkers For Heart Failure
  • Modulation Of Novel Immune Checkpoint Targets
  • Atp-Hydrolyzing Enzyme Useful For Treating Dysbiosis
  • Methods For Diagnosis And Treating Polycystic Ovary Syndrome (Pcos)
  • A Calcium Normalizer Targeting The Vitamin D Receptor And Therapeutic Uses Thereof
  • Triple Combination Formulation For Treatment Of Chronic Pain
  • Mutant Smoothened And Methods Of Using The Same
  • Methods Of Preparing And Expanding Type I Innate Lymphoid Cells And Therapeutic Uses Thereof
  • Compound For Modulating Rlr, Tlr, Oas And/Or Oncostatin M Pathways, Use Thereof For Preparing A Medicine, Composition, Method For Modulating Said Pathways And Method Of Treatment
  • Markers Of Plant Health
  • Labeling, Isolation, & Analysis Of Rna From Rare Cell Populations
  • Methods, Apparatuses, And Systems For Microorganism Strain Analysis Of Complex Heterogeneous Communities, Predicting And Identifying Functional Relationships And Interactions Thereof, And Selecting And Synthesizing Microbial Ensembles Based Thereon
  • Microfluidic In Vitro Model For Elucidating The Molecular Effects Of Simulated Dietary Regimens On Gut Microbiota And Host Cells
  • Method Of Producing Somatic Cell ("Heart Pacemaker") Cells From Stem Cells
  • Methods And Systems For Crispr Selection
  • Small Molecule Lipid Ii Inhibitors
  • Transcription Factors To Improve Resistance To Environmental Stress In Plants
  • Diagnosis Of Frontotemporal Dementia
  • Anti-Tumor Immunity Induces The Presentation Of Aberrant Peptides
  • Mutant Smoothened And Methods Of Using The Same
  • Liver Organoid, Uses Thereof And Culture Method For Obtaining Them
  • Methods, Apparatuses And Systems For Analyzing Microorganism Strains From Complex Heterogeneous Communities, Predicting And Identifying Functional Relationships And Interactions Thereof, And Selecting And Synthesizing Microbial Ensembles Based Thereon
  • Methods And Systems For Multiple Taxonomic Classification
  • Mutant Smoothened And Methods Of Using The Same
  • Transcription Activator-Like Effector (Tale) - Lysine-Specific Demethylase 1 (Lsd1) Fusion Proteins
  • Transcription Activator-Like Effector (Tale) - Lysine-Specific Demethylase 1 (Lsd1) Fusion Proteins
  • A Method For Determining Whether A Subject Is At Risk To Develop Cancer And Tools Related Thereto
  • Method For Treating T-Helper Type 2 Mediated Disease
  • Ddx43 As A Biomarker Of Resistance To Mek1/2 Inhibitors
  • Systems And Methods For Joint Interactive Visualization Of Gene Expression And Dna Chromatin Accessibility
  • Culture Medium For Epithelial Stem Cells And Organoids Comprising The Stem Cells
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/gb-2010-11-10-r106

    DOI

    http://dx.doi.org/10.1186/gb-2010-11-10-r106

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031289083

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20979621


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Binomial Distribution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin Immunoprecipitation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linear Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccharomyces cerevisiae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tissue Culture Techniques", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "European Molecular Biology Laboratory, Mayerhofstra\u00dfe 1, 69117, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.4709.a", 
              "name": [
                "European Molecular Biology Laboratory, Mayerhofstra\u00dfe 1, 69117, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anders", 
            "givenName": "Simon", 
            "id": "sg:person.0626036202.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626036202.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Molecular Biology Laboratory, Mayerhofstra\u00dfe 1, 69117, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.4709.a", 
              "name": [
                "European Molecular Biology Laboratory, Mayerhofstra\u00dfe 1, 69117, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huber", 
            "givenName": "Wolfgang", 
            "id": "sg:person.0750614167.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750614167.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050509557", 
              "https://doi.org/10.1186/gb-2010-11-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010098420", 
              "https://doi.org/10.1186/1471-2164-10-221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036304799", 
              "https://doi.org/10.1038/nmeth1068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053091615", 
              "https://doi.org/10.1186/1471-2105-11-94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010813801", 
              "https://doi.org/10.1038/nature07488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3242-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705877", 
              "https://doi.org/10.1007/978-1-4899-3242-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583368", 
              "https://doi.org/10.1186/gb-2009-10-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-29362-0_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025432622", 
              "https://doi.org/10.1007/0-387-29362-0_23"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-10-27", 
        "datePublishedReg": "2010-10-27", 
        "description": "High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "count data", 
          "sequence count data", 
          "suitable error model", 
          "negative binomial distribution", 
          "good statistical power", 
          "high-throughput sequencing assays", 
          "binomial distribution", 
          "error model", 
          "local regression", 
          "statistical power", 
          "Bioconductor package", 
          "such data", 
          "differential signal", 
          "estimation", 
          "data variability", 
          "differential expression analysis", 
          "DESeq", 
          "model", 
          "distribution", 
          "package", 
          "variance", 
          "power", 
          "data", 
          "signals", 
          "implementation", 
          "form", 
          "dynamic range", 
          "regression", 
          "range", 
          "readout", 
          "counting", 
          "analysis", 
          "variability", 
          "quantitative readout", 
          "sequencing assays", 
          "ChIP-seq", 
          "RNA-seq", 
          "expression analysis", 
          "method", 
          "assays"
        ], 
        "name": "Differential expression analysis for sequence count data", 
        "pagination": "r106", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031289083"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/gb-2010-11-10-r106"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20979621"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/gb-2010-11-10-r106", 
          "https://app.dimensions.ai/details/publication/pub.1031289083"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/gb-2010-11-10-r106"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-10-r106'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-10-r106'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-10-r106'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2010-11-10-r106'


     

    This table displays all metadata directly associated to this object as RDF triples.

    204 TRIPLES      21 PREDICATES      89 URIs      70 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/gb-2010-11-10-r106 schema:about N08272e087b664ae19e0b4930110fd586
    2 N1fb90cd0245d46e586b040922243a849
    3 N3230300c8c0245fd9dd0c4017ead4074
    4 N3ac899952ba248169d732e8fa221a2e3
    5 N6452b30c720b47939de7fa346818d4d4
    6 N6a2a6b104a934c67b76b1216a9122ee2
    7 N6a9ba46b81f04af3a5ce9c44d4d7e3a5
    8 N81cfa92ee0cb4e7bb964c6a202201366
    9 N82377bd4ca0e4d54aae50708f8c30357
    10 N9f9d9dba3cb14b02942a7b418d31a6c1
    11 Na6153ba51e2341ffb4dc1cacde5208ba
    12 Nc73cfb61f52e431ab73b6a1ea4a8d774
    13 Nd8dce63e02464744815f9a750e6569a1
    14 anzsrc-for:05
    15 anzsrc-for:06
    16 anzsrc-for:08
    17 schema:author Nec4a8a67eebd49d9a0b71cb0dc0d97ba
    18 schema:citation sg:pub.10.1007/0-387-29362-0_23
    19 sg:pub.10.1007/978-1-4899-3242-6
    20 sg:pub.10.1038/nature07488
    21 sg:pub.10.1038/nmeth.1226
    22 sg:pub.10.1038/nmeth1068
    23 sg:pub.10.1186/1471-2105-11-94
    24 sg:pub.10.1186/1471-2164-10-221
    25 sg:pub.10.1186/gb-2004-5-10-r80
    26 sg:pub.10.1186/gb-2009-10-3-r25
    27 sg:pub.10.1186/gb-2010-11-3-r25
    28 schema:datePublished 2010-10-27
    29 schema:datePublishedReg 2010-10-27
    30 schema:description High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
    31 schema:genre article
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N4cc2e4221fff41fa9d6aac6e25e93e54
    34 N8d908a75593f42f9b0df6c61b4332fbc
    35 sg:journal.1023439
    36 schema:keywords Bioconductor package
    37 ChIP-seq
    38 DESeq
    39 RNA-seq
    40 analysis
    41 assays
    42 binomial distribution
    43 count data
    44 counting
    45 data
    46 data variability
    47 differential expression analysis
    48 differential signal
    49 distribution
    50 dynamic range
    51 error model
    52 estimation
    53 expression analysis
    54 form
    55 good statistical power
    56 high-throughput sequencing assays
    57 implementation
    58 local regression
    59 method
    60 model
    61 negative binomial distribution
    62 package
    63 power
    64 quantitative readout
    65 range
    66 readout
    67 regression
    68 sequence count data
    69 sequencing assays
    70 signals
    71 statistical power
    72 such data
    73 suitable error model
    74 variability
    75 variance
    76 schema:name Differential expression analysis for sequence count data
    77 schema:pagination r106
    78 schema:productId N2b123ba8c8e84d2aa7ded81adc68435b
    79 N5a0d351bb8ab4057936960c869b10396
    80 Nb8ce288a40844f5b9a73f0959312845b
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
    82 https://doi.org/10.1186/gb-2010-11-10-r106
    83 schema:sdDatePublished 2022-10-01T06:36
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Ncec17951116a461bbe4ef4726b5c9134
    86 schema:url https://doi.org/10.1186/gb-2010-11-10-r106
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N08272e087b664ae19e0b4930110fd586 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Saccharomyces cerevisiae
    92 rdf:type schema:DefinedTerm
    93 N1f5a6e6724c74984b94466387c763899 rdf:first sg:person.0750614167.42
    94 rdf:rest rdf:nil
    95 N1fb90cd0245d46e586b040922243a849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Animals
    97 rdf:type schema:DefinedTerm
    98 N2b123ba8c8e84d2aa7ded81adc68435b schema:name pubmed_id
    99 schema:value 20979621
    100 rdf:type schema:PropertyValue
    101 N3230300c8c0245fd9dd0c4017ead4074 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Linear Models
    103 rdf:type schema:DefinedTerm
    104 N3ac899952ba248169d732e8fa221a2e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Computational Biology
    106 rdf:type schema:DefinedTerm
    107 N4cc2e4221fff41fa9d6aac6e25e93e54 schema:issueNumber 10
    108 rdf:type schema:PublicationIssue
    109 N5a0d351bb8ab4057936960c869b10396 schema:name dimensions_id
    110 schema:value pub.1031289083
    111 rdf:type schema:PropertyValue
    112 N6452b30c720b47939de7fa346818d4d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Gene Expression Profiling
    114 rdf:type schema:DefinedTerm
    115 N6a2a6b104a934c67b76b1216a9122ee2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Models, Genetic
    117 rdf:type schema:DefinedTerm
    118 N6a9ba46b81f04af3a5ce9c44d4d7e3a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Stem Cells
    120 rdf:type schema:DefinedTerm
    121 N81cfa92ee0cb4e7bb964c6a202201366 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Chromatin Immunoprecipitation
    123 rdf:type schema:DefinedTerm
    124 N82377bd4ca0e4d54aae50708f8c30357 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Binomial Distribution
    126 rdf:type schema:DefinedTerm
    127 N8d908a75593f42f9b0df6c61b4332fbc schema:volumeNumber 11
    128 rdf:type schema:PublicationVolume
    129 N9f9d9dba3cb14b02942a7b418d31a6c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Tissue Culture Techniques
    131 rdf:type schema:DefinedTerm
    132 Na6153ba51e2341ffb4dc1cacde5208ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name High-Throughput Nucleotide Sequencing
    134 rdf:type schema:DefinedTerm
    135 Nb8ce288a40844f5b9a73f0959312845b schema:name doi
    136 schema:value 10.1186/gb-2010-11-10-r106
    137 rdf:type schema:PropertyValue
    138 Nc73cfb61f52e431ab73b6a1ea4a8d774 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Drosophila
    140 rdf:type schema:DefinedTerm
    141 Ncec17951116a461bbe4ef4726b5c9134 schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 Nd8dce63e02464744815f9a750e6569a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Sequence Analysis, RNA
    145 rdf:type schema:DefinedTerm
    146 Nec4a8a67eebd49d9a0b71cb0dc0d97ba rdf:first sg:person.0626036202.10
    147 rdf:rest N1f5a6e6724c74984b94466387c763899
    148 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Environmental Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Biological Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Information and Computing Sciences
    156 rdf:type schema:DefinedTerm
    157 sg:journal.1023439 schema:issn 1465-6906
    158 1474-760X
    159 schema:name Genome Biology
    160 schema:publisher Springer Nature
    161 rdf:type schema:Periodical
    162 sg:person.0626036202.10 schema:affiliation grid-institutes:grid.4709.a
    163 schema:familyName Anders
    164 schema:givenName Simon
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626036202.10
    166 rdf:type schema:Person
    167 sg:person.0750614167.42 schema:affiliation grid-institutes:grid.4709.a
    168 schema:familyName Huber
    169 schema:givenName Wolfgang
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750614167.42
    171 rdf:type schema:Person
    172 sg:pub.10.1007/0-387-29362-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432622
    173 https://doi.org/10.1007/0-387-29362-0_23
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/978-1-4899-3242-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705877
    176 https://doi.org/10.1007/978-1-4899-3242-6
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nature07488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010813801
    179 https://doi.org/10.1038/nature07488
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    182 https://doi.org/10.1038/nmeth.1226
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nmeth1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304799
    185 https://doi.org/10.1038/nmeth1068
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1186/1471-2105-11-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053091615
    188 https://doi.org/10.1186/1471-2105-11-94
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1186/1471-2164-10-221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010098420
    191 https://doi.org/10.1186/1471-2164-10-221
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    194 https://doi.org/10.1186/gb-2004-5-10-r80
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
    197 https://doi.org/10.1186/gb-2009-10-3-r25
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
    200 https://doi.org/10.1186/gb-2010-11-3-r25
    201 rdf:type schema:CreativeWork
    202 grid-institutes:grid.4709.a schema:alternateName European Molecular Biology Laboratory, Mayerhofstraße 1, 69117, Heidelberg, Germany
    203 schema:name European Molecular Biology Laboratory, Mayerhofstraße 1, 69117, Heidelberg, Germany
    204 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...