Community-wide analysis of microbial genome sequence signatures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-08-21

AUTHORS

Gregory J Dick, Anders F Andersson, Brett J Baker, Sheri L Simmons, Brian C Thomas, A Pepper Yelton, Jillian F Banfield

ABSTRACT

BackgroundAnalyses of DNA sequences from cultivated microorganisms have revealed genome-wide, taxa-specific nucleotide compositional characteristics, referred to as genome signatures. These signatures have far-reaching implications for understanding genome evolution and potential application in classification of metagenomic sequence fragments. However, little is known regarding the distribution of genome signatures in natural microbial communities or the extent to which environmental factors shape them.ResultsWe analyzed metagenomic sequence data from two acidophilic biofilm communities, including composite genomes reconstructed for nine archaea, three bacteria, and numerous associated viruses, as well as thousands of unassigned fragments from strain variants and low-abundance organisms. Genome signatures, in the form of tetranucleotide frequencies analyzed by emergent self-organizing maps, segregated sequences from all known populations sharing < 50 to 60% average amino acid identity and revealed previously unknown genomic clusters corresponding to low-abundance organisms and a putative plasmid. Signatures were pervasive genome-wide. Clusters were resolved because intra-genome differences resulting from translational selection or protein adaptation to the intracellular (pH ~5) versus extracellular (pH ~1) environment were small relative to inter-genome differences. We found that these genome signatures stem from multiple influences but are primarily manifested through codon composition, which we propose is the result of genome-specific mutational biases.ConclusionsAn important conclusion is that shared environmental pressures and interactions among coevolving organisms do not obscure genome signatures in acid mine drainage communities. Thus, genome signatures can be used to assign sequence fragments to populations, an essential prerequisite if metagenomics is to provide ecological and biochemical insights into the functioning of microbial communities. More... »

PAGES

r85

References to SciGraph publications

  • 2008-04-28. Binning sequences using very sparse labels within a metagenome in BMC BIOINFORMATICS
  • 2007-03-07. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria in NATURE
  • 2005-10-14. Differentiation of regions with atypical oligonucleotide composition in bacterial genomes in BMC BIOINFORMATICS
  • 1997-04. Amelioration of Bacterial Genomes: Rates of Change and Exchange in JOURNAL OF MOLECULAR EVOLUTION
  • 2007-05-31. Genomic plasticity in prokaryotes: the case of the square haloarchaeon in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2008-04-09. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes in GENOME BIOLOGY
  • 2008-06-26. Genomic patterns of recombination, clonal divergence and environment in marine microbial populations in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2005-05-10. Microbial community genomics in the ocean in NATURE REVIEWS MICROBIOLOGY
  • 2006-04. Deciphering the evolution and metabolism of an anammox bacterium from a community genome in NATURE
  • 2004-02-01. Community structure and metabolism through reconstruction of microbial genomes from the environment in NATURE
  • 2004-07-16. Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid in EXTREMOPHILES
  • 2006-12-10. Accurate phylogenetic classification of variable-length DNA fragments in NATURE METHODS
  • 2006-10-13. The reach of the genome signature in prokaryotes in BMC ECOLOGY AND EVOLUTION
  • 2006-01-18. Evidence of host-virus co-evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses in BMC GENOMICS
  • 2005-06. Genomic studies of uncultivated archaea in NATURE REVIEWS MICROBIOLOGY
  • 2006-03-16. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action in BIOLOGY DIRECT
  • 2001-03-22. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes in GENOME BIOLOGY
  • 2005-06. Community genomics in microbial ecology and evolution in NATURE REVIEWS MICROBIOLOGY
  • 2004-06-30. Acid mine drainage biogeochemistry at Iron Mountain, California in GEOCHEMICAL TRANSACTIONS
  • 2007-04-29. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods in NATURE METHODS
  • 2008-05-01. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2006-12-07. An environmental signature for 323 microbial genomes based on codon adaptation indices in GENOME BIOLOGY
  • 2008-05-07. Microbial diversity and the genetic nature of microbial species in NATURE REVIEWS MICROBIOLOGY
  • 2006-09-24. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/gb-2009-10-8-r85

    DOI

    http://dx.doi.org/10.1186/gb-2009-10-8-r85

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014147708

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19698104


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Iron", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mining", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Soil Microbiology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Geological Sciences, University of Michigan, 1100 N. University Ave, 48109-1005, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA", 
                "Department of Geological Sciences, University of Michigan, 1100 N. University Ave, 48109-1005, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dick", 
            "givenName": "Gregory J", 
            "id": "sg:person.01030501116.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030501116.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bacteriology, Swedish Institute for Infectious Disease Control, Nobels v\u00e4g 18, SE-17182, Solna, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.419734.c", 
              "name": [
                "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA", 
                "Evolutionary Biology Centre, Department of Limnology, Uppsala University, Norbyv. 18 D, SE-75236, Uppsala, Sweden", 
                "Department of Bacteriology, Swedish Institute for Infectious Disease Control, Nobels v\u00e4g 18, SE-17182, Solna, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andersson", 
            "givenName": "Anders F", 
            "id": "sg:person.01075173043.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075173043.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baker", 
            "givenName": "Brett J", 
            "id": "sg:person.0651757375.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Simmons", 
            "givenName": "Sheri L", 
            "id": "sg:person.01174676266.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174676266.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "Brian C", 
            "id": "sg:person.0732742066.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732742066.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yelton", 
            "givenName": "A Pepper", 
            "id": "sg:person.0773144006.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773144006.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Science, Policy, and Management, University of California, Hilgard Hall, 94720, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA", 
                "Department of Environmental Science, Policy, and Management, University of California, Hilgard Hall, 94720, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Banfield", 
            "givenName": "Jillian F", 
            "id": "sg:person.01350542775.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrmicro1872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046212476", 
              "https://doi.org/10.1038/nrmicro1872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023089166", 
              "https://doi.org/10.1038/nature02340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036758210", 
              "https://doi.org/10.1038/nature04647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00792-004-0404-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035858890", 
              "https://doi.org/10.1007/s00792-004-0404-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035386450", 
              "https://doi.org/10.1038/ismej.2008.62"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035689669", 
              "https://doi.org/10.1038/nrmicro1158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2007.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039851368", 
              "https://doi.org/10.1038/ismej.2007.35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-7-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004290296", 
              "https://doi.org/10.1186/1471-2164-7-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1467-4866-5-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053068771", 
              "https://doi.org/10.1186/1467-4866-5-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047202519", 
              "https://doi.org/10.1038/nmeth1043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2001-2-4-research0010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015958718", 
              "https://doi.org/10.1186/gb-2001-2-4-research0010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009864240", 
              "https://doi.org/10.1038/nbt1247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-6-84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046901190", 
              "https://doi.org/10.1186/1471-2148-6-84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-4-r70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016424517", 
              "https://doi.org/10.1186/gb-2008-9-4-r70"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020289704", 
              "https://doi.org/10.1038/nrmicro1157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1745-6150-1-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011010591", 
              "https://doi.org/10.1186/1745-6150-1-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021439156", 
              "https://doi.org/10.1038/ismej.2008.38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2006-7-12-r114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026225318", 
              "https://doi.org/10.1186/gb-2006-7-12-r114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013185112", 
              "https://doi.org/10.1038/nrmicro1159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029863205", 
              "https://doi.org/10.1038/nature05624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007149601", 
              "https://doi.org/10.1038/nmeth976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003746243", 
              "https://doi.org/10.1186/1471-2105-9-215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007853567", 
              "https://doi.org/10.1186/1471-2105-6-251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017555006", 
              "https://doi.org/10.1007/pl00006158"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-08-21", 
        "datePublishedReg": "2009-08-21", 
        "description": "BackgroundAnalyses of DNA sequences from cultivated microorganisms have revealed genome-wide, taxa-specific nucleotide compositional characteristics, referred to as genome signatures. These signatures have far-reaching implications for understanding genome evolution and potential application in classification of metagenomic sequence fragments. However, little is known regarding the distribution of genome signatures in natural microbial communities or the extent to which environmental factors shape them.ResultsWe analyzed metagenomic sequence data from two acidophilic biofilm communities, including composite genomes reconstructed for nine archaea, three bacteria, and numerous associated viruses, as well as thousands of unassigned fragments from strain variants and low-abundance organisms. Genome signatures, in the form of tetranucleotide frequencies analyzed by emergent self-organizing maps, segregated sequences from all known populations sharing < 50 to 60% average amino acid identity and revealed previously unknown genomic clusters corresponding to low-abundance organisms and a putative plasmid. Signatures were pervasive genome-wide. Clusters were resolved because intra-genome differences resulting from translational selection or protein adaptation to the intracellular (pH ~5) versus extracellular (pH ~1) environment were small relative to inter-genome differences. We found that these genome signatures stem from multiple influences but are primarily manifested through codon composition, which we propose is the result of genome-specific mutational biases.ConclusionsAn important conclusion is that shared environmental pressures and interactions among coevolving organisms do not obscure genome signatures in acid mine drainage communities. Thus, genome signatures can be used to assign sequence fragments to populations, an essential prerequisite if metagenomics is to provide ecological and biochemical insights into the functioning of microbial communities.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/gb-2009-10-8-r85", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8695213", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "low-abundance organisms", 
          "genome signature", 
          "microbial communities", 
          "acid mine drainage community", 
          "average amino acid identity", 
          "sequence fragments", 
          "natural microbial communities", 
          "metagenomic sequence data", 
          "amino acid identity", 
          "community-wide analysis", 
          "genome evolution", 
          "composite genome", 
          "protein adaptation", 
          "mutational biases", 
          "tetranucleotide frequencies", 
          "translational selection", 
          "biofilm communities", 
          "sequence signatures", 
          "acid identity", 
          "genomic clusters", 
          "sequence data", 
          "codon composition", 
          "DNA sequences", 
          "biochemical insights", 
          "putative plasmids", 
          "extracellular environment", 
          "genome", 
          "metagenomic sequence fragments", 
          "organisms", 
          "strain variants", 
          "environmental factors", 
          "environmental pressures", 
          "emergent self-organizing maps", 
          "fragments", 
          "sequence", 
          "archaea", 
          "metagenomics", 
          "signatures", 
          "plasmid", 
          "community", 
          "microorganisms", 
          "bacteria", 
          "intracellular", 
          "essential prerequisite", 
          "population", 
          "small relative", 
          "clusters", 
          "adaptation", 
          "variants", 
          "relatives", 
          "evolution", 
          "virus", 
          "insights", 
          "selection", 
          "thousands", 
          "interaction", 
          "identity", 
          "composition", 
          "prerequisite", 
          "compositional characteristics", 
          "differences", 
          "potential applications", 
          "environment", 
          "factors", 
          "multiple influences", 
          "functioning", 
          "distribution", 
          "analysis", 
          "maps", 
          "form", 
          "extent", 
          "ResultsWe", 
          "implications", 
          "self-organizing map", 
          "data", 
          "results", 
          "biases", 
          "frequency", 
          "influence", 
          "characteristics", 
          "important conclusions", 
          "conclusion", 
          "classification", 
          "applications", 
          "pressure"
        ], 
        "name": "Community-wide analysis of microbial genome sequence signatures", 
        "pagination": "r85", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014147708"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/gb-2009-10-8-r85"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19698104"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/gb-2009-10-8-r85", 
          "https://app.dimensions.ai/details/publication/pub.1014147708"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_478.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/gb-2009-10-8-r85"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2009-10-8-r85'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2009-10-8-r85'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2009-10-8-r85'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2009-10-8-r85'


     

    This table displays all metadata directly associated to this object as RDF triples.

    321 TRIPLES      21 PREDICATES      140 URIs      107 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/gb-2009-10-8-r85 schema:about N01e39de1a20e424d8aa443eefb900b12
    2 N2e3df97c6685431180e4e6a361ff0f75
    3 N5d976758e85a4681a2393286b6817ef3
    4 Nb3037ccc09434a5e84df12bd6941952d
    5 Nc66c7b0ee3364d6481734a7df76249eb
    6 anzsrc-for:06
    7 anzsrc-for:0604
    8 anzsrc-for:0605
    9 schema:author Nc28f3924818c4ef3ac9626bea33152ee
    10 schema:citation sg:pub.10.1007/pl00006158
    11 sg:pub.10.1007/s00792-004-0404-5
    12 sg:pub.10.1038/ismej.2007.35
    13 sg:pub.10.1038/ismej.2008.38
    14 sg:pub.10.1038/ismej.2008.62
    15 sg:pub.10.1038/nature02340
    16 sg:pub.10.1038/nature04647
    17 sg:pub.10.1038/nature05624
    18 sg:pub.10.1038/nbt1247
    19 sg:pub.10.1038/nmeth1043
    20 sg:pub.10.1038/nmeth976
    21 sg:pub.10.1038/nrmicro1157
    22 sg:pub.10.1038/nrmicro1158
    23 sg:pub.10.1038/nrmicro1159
    24 sg:pub.10.1038/nrmicro1872
    25 sg:pub.10.1186/1467-4866-5-13
    26 sg:pub.10.1186/1471-2105-6-251
    27 sg:pub.10.1186/1471-2105-9-215
    28 sg:pub.10.1186/1471-2148-6-84
    29 sg:pub.10.1186/1471-2164-7-8
    30 sg:pub.10.1186/1745-6150-1-7
    31 sg:pub.10.1186/gb-2001-2-4-research0010
    32 sg:pub.10.1186/gb-2006-7-12-r114
    33 sg:pub.10.1186/gb-2008-9-4-r70
    34 schema:datePublished 2009-08-21
    35 schema:datePublishedReg 2009-08-21
    36 schema:description BackgroundAnalyses of DNA sequences from cultivated microorganisms have revealed genome-wide, taxa-specific nucleotide compositional characteristics, referred to as genome signatures. These signatures have far-reaching implications for understanding genome evolution and potential application in classification of metagenomic sequence fragments. However, little is known regarding the distribution of genome signatures in natural microbial communities or the extent to which environmental factors shape them.ResultsWe analyzed metagenomic sequence data from two acidophilic biofilm communities, including composite genomes reconstructed for nine archaea, three bacteria, and numerous associated viruses, as well as thousands of unassigned fragments from strain variants and low-abundance organisms. Genome signatures, in the form of tetranucleotide frequencies analyzed by emergent self-organizing maps, segregated sequences from all known populations sharing < 50 to 60% average amino acid identity and revealed previously unknown genomic clusters corresponding to low-abundance organisms and a putative plasmid. Signatures were pervasive genome-wide. Clusters were resolved because intra-genome differences resulting from translational selection or protein adaptation to the intracellular (pH ~5) versus extracellular (pH ~1) environment were small relative to inter-genome differences. We found that these genome signatures stem from multiple influences but are primarily manifested through codon composition, which we propose is the result of genome-specific mutational biases.ConclusionsAn important conclusion is that shared environmental pressures and interactions among coevolving organisms do not obscure genome signatures in acid mine drainage communities. Thus, genome signatures can be used to assign sequence fragments to populations, an essential prerequisite if metagenomics is to provide ecological and biochemical insights into the functioning of microbial communities.
    37 schema:genre article
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N112c6f7ecd36425fb7c116d23c0f06ab
    40 N3fac61135dd441dbb74e4e8bc049ce36
    41 sg:journal.1023439
    42 schema:keywords DNA sequences
    43 ResultsWe
    44 acid identity
    45 acid mine drainage community
    46 adaptation
    47 amino acid identity
    48 analysis
    49 applications
    50 archaea
    51 average amino acid identity
    52 bacteria
    53 biases
    54 biochemical insights
    55 biofilm communities
    56 characteristics
    57 classification
    58 clusters
    59 codon composition
    60 community
    61 community-wide analysis
    62 composite genome
    63 composition
    64 compositional characteristics
    65 conclusion
    66 data
    67 differences
    68 distribution
    69 emergent self-organizing maps
    70 environment
    71 environmental factors
    72 environmental pressures
    73 essential prerequisite
    74 evolution
    75 extent
    76 extracellular environment
    77 factors
    78 form
    79 fragments
    80 frequency
    81 functioning
    82 genome
    83 genome evolution
    84 genome signature
    85 genomic clusters
    86 identity
    87 implications
    88 important conclusions
    89 influence
    90 insights
    91 interaction
    92 intracellular
    93 low-abundance organisms
    94 maps
    95 metagenomic sequence data
    96 metagenomic sequence fragments
    97 metagenomics
    98 microbial communities
    99 microorganisms
    100 multiple influences
    101 mutational biases
    102 natural microbial communities
    103 organisms
    104 plasmid
    105 population
    106 potential applications
    107 prerequisite
    108 pressure
    109 protein adaptation
    110 putative plasmids
    111 relatives
    112 results
    113 selection
    114 self-organizing map
    115 sequence
    116 sequence data
    117 sequence fragments
    118 sequence signatures
    119 signatures
    120 small relative
    121 strain variants
    122 tetranucleotide frequencies
    123 thousands
    124 translational selection
    125 variants
    126 virus
    127 schema:name Community-wide analysis of microbial genome sequence signatures
    128 schema:pagination r85
    129 schema:productId N91cf6d5891434abb89b599a60d12cdd3
    130 Nccf215d5770843c1bd2fb23f33729235
    131 Ned482e7ceb9f47dc89d673ae67ec4738
    132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014147708
    133 https://doi.org/10.1186/gb-2009-10-8-r85
    134 schema:sdDatePublished 2022-10-01T06:35
    135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    136 schema:sdPublisher Necf7c4b0a193401994f5f831a887d0e7
    137 schema:url https://doi.org/10.1186/gb-2009-10-8-r85
    138 sgo:license sg:explorer/license/
    139 sgo:sdDataset articles
    140 rdf:type schema:ScholarlyArticle
    141 N01e39de1a20e424d8aa443eefb900b12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Mining
    143 rdf:type schema:DefinedTerm
    144 N06861f4ac11a4b059ad036cefdc5e053 rdf:first sg:person.01174676266.61
    145 rdf:rest N4df85a95e12f4be0bcd72eaa7c932b90
    146 N112c6f7ecd36425fb7c116d23c0f06ab schema:issueNumber 8
    147 rdf:type schema:PublicationIssue
    148 N2e3df97c6685431180e4e6a361ff0f75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Genomics
    150 rdf:type schema:DefinedTerm
    151 N3fac61135dd441dbb74e4e8bc049ce36 schema:volumeNumber 10
    152 rdf:type schema:PublicationVolume
    153 N4df85a95e12f4be0bcd72eaa7c932b90 rdf:first sg:person.0732742066.21
    154 rdf:rest N9c24aaf0d1c14ee3b948b2f7064756be
    155 N5297f3e6156c42358d301541d9228a98 rdf:first sg:person.0651757375.15
    156 rdf:rest N06861f4ac11a4b059ad036cefdc5e053
    157 N5d976758e85a4681a2393286b6817ef3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Soil Microbiology
    159 rdf:type schema:DefinedTerm
    160 N65f4825cdffd441e8c77d9daba1d7aaa rdf:first sg:person.01350542775.47
    161 rdf:rest rdf:nil
    162 N91cf6d5891434abb89b599a60d12cdd3 schema:name pubmed_id
    163 schema:value 19698104
    164 rdf:type schema:PropertyValue
    165 N9c24aaf0d1c14ee3b948b2f7064756be rdf:first sg:person.0773144006.96
    166 rdf:rest N65f4825cdffd441e8c77d9daba1d7aaa
    167 Nb3037ccc09434a5e84df12bd6941952d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Iron
    169 rdf:type schema:DefinedTerm
    170 Nba30c35108b04d0a95ad56d129778870 rdf:first sg:person.01075173043.20
    171 rdf:rest N5297f3e6156c42358d301541d9228a98
    172 Nc28f3924818c4ef3ac9626bea33152ee rdf:first sg:person.01030501116.39
    173 rdf:rest Nba30c35108b04d0a95ad56d129778870
    174 Nc66c7b0ee3364d6481734a7df76249eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Bacteria
    176 rdf:type schema:DefinedTerm
    177 Nccf215d5770843c1bd2fb23f33729235 schema:name doi
    178 schema:value 10.1186/gb-2009-10-8-r85
    179 rdf:type schema:PropertyValue
    180 Necf7c4b0a193401994f5f831a887d0e7 schema:name Springer Nature - SN SciGraph project
    181 rdf:type schema:Organization
    182 Ned482e7ceb9f47dc89d673ae67ec4738 schema:name dimensions_id
    183 schema:value pub.1014147708
    184 rdf:type schema:PropertyValue
    185 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Biological Sciences
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Genetics
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Microbiology
    193 rdf:type schema:DefinedTerm
    194 sg:grant.8695213 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2009-10-8-r85
    195 rdf:type schema:MonetaryGrant
    196 sg:journal.1023439 schema:issn 1465-6906
    197 1474-760X
    198 schema:name Genome Biology
    199 schema:publisher Springer Nature
    200 rdf:type schema:Periodical
    201 sg:person.01030501116.39 schema:affiliation grid-institutes:grid.214458.e
    202 schema:familyName Dick
    203 schema:givenName Gregory J
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030501116.39
    205 rdf:type schema:Person
    206 sg:person.01075173043.20 schema:affiliation grid-institutes:grid.419734.c
    207 schema:familyName Andersson
    208 schema:givenName Anders F
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075173043.20
    210 rdf:type schema:Person
    211 sg:person.01174676266.61 schema:affiliation grid-institutes:grid.47840.3f
    212 schema:familyName Simmons
    213 schema:givenName Sheri L
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174676266.61
    215 rdf:type schema:Person
    216 sg:person.01350542775.47 schema:affiliation grid-institutes:grid.47840.3f
    217 schema:familyName Banfield
    218 schema:givenName Jillian F
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47
    220 rdf:type schema:Person
    221 sg:person.0651757375.15 schema:affiliation grid-institutes:grid.47840.3f
    222 schema:familyName Baker
    223 schema:givenName Brett J
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15
    225 rdf:type schema:Person
    226 sg:person.0732742066.21 schema:affiliation grid-institutes:grid.47840.3f
    227 schema:familyName Thomas
    228 schema:givenName Brian C
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732742066.21
    230 rdf:type schema:Person
    231 sg:person.0773144006.96 schema:affiliation grid-institutes:grid.47840.3f
    232 schema:familyName Yelton
    233 schema:givenName A Pepper
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773144006.96
    235 rdf:type schema:Person
    236 sg:pub.10.1007/pl00006158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017555006
    237 https://doi.org/10.1007/pl00006158
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00792-004-0404-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035858890
    240 https://doi.org/10.1007/s00792-004-0404-5
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/ismej.2007.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039851368
    243 https://doi.org/10.1038/ismej.2007.35
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/ismej.2008.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021439156
    246 https://doi.org/10.1038/ismej.2008.38
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/ismej.2008.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035386450
    249 https://doi.org/10.1038/ismej.2008.62
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nature02340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023089166
    252 https://doi.org/10.1038/nature02340
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nature04647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036758210
    255 https://doi.org/10.1038/nature04647
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature05624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029863205
    258 https://doi.org/10.1038/nature05624
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nbt1247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009864240
    261 https://doi.org/10.1038/nbt1247
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nmeth1043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047202519
    264 https://doi.org/10.1038/nmeth1043
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nmeth976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007149601
    267 https://doi.org/10.1038/nmeth976
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nrmicro1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020289704
    270 https://doi.org/10.1038/nrmicro1157
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nrmicro1158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035689669
    273 https://doi.org/10.1038/nrmicro1158
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nrmicro1159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013185112
    276 https://doi.org/10.1038/nrmicro1159
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nrmicro1872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046212476
    279 https://doi.org/10.1038/nrmicro1872
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1186/1467-4866-5-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053068771
    282 https://doi.org/10.1186/1467-4866-5-13
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1186/1471-2105-6-251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007853567
    285 https://doi.org/10.1186/1471-2105-6-251
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1186/1471-2105-9-215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003746243
    288 https://doi.org/10.1186/1471-2105-9-215
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1186/1471-2148-6-84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046901190
    291 https://doi.org/10.1186/1471-2148-6-84
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1186/1471-2164-7-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004290296
    294 https://doi.org/10.1186/1471-2164-7-8
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1186/1745-6150-1-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011010591
    297 https://doi.org/10.1186/1745-6150-1-7
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1186/gb-2001-2-4-research0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015958718
    300 https://doi.org/10.1186/gb-2001-2-4-research0010
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1186/gb-2006-7-12-r114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026225318
    303 https://doi.org/10.1186/gb-2006-7-12-r114
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1186/gb-2008-9-4-r70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016424517
    306 https://doi.org/10.1186/gb-2008-9-4-r70
    307 rdf:type schema:CreativeWork
    308 grid-institutes:grid.214458.e schema:alternateName Department of Geological Sciences, University of Michigan, 1100 N. University Ave, 48109-1005, Ann Arbor, MI, USA
    309 schema:name Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA
    310 Department of Geological Sciences, University of Michigan, 1100 N. University Ave, 48109-1005, Ann Arbor, MI, USA
    311 rdf:type schema:Organization
    312 grid-institutes:grid.419734.c schema:alternateName Department of Bacteriology, Swedish Institute for Infectious Disease Control, Nobels väg 18, SE-17182, Solna, Sweden
    313 schema:name Department of Bacteriology, Swedish Institute for Infectious Disease Control, Nobels väg 18, SE-17182, Solna, Sweden
    314 Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA
    315 Evolutionary Biology Centre, Department of Limnology, Uppsala University, Norbyv. 18 D, SE-75236, Uppsala, Sweden
    316 rdf:type schema:Organization
    317 grid-institutes:grid.47840.3f schema:alternateName Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA
    318 Department of Environmental Science, Policy, and Management, University of California, Hilgard Hall, 94720, Berkeley, CA, USA
    319 schema:name Department of Earth and Planetary Science, University of California, 307 McCone Hall, 94720, Berkeley, CA, USA
    320 Department of Environmental Science, Policy, and Management, University of California, Hilgard Hall, 94720, Berkeley, CA, USA
    321 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...