Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-11

AUTHORS

Gaëlle Lelandais, Véronique Tanty, Colette Geneix, Catherine Etchebest, Claude Jacq, Frédéric Devaux

ABSTRACT

BACKGROUND: Recent technical and methodological advances have placed microbial models at the forefront of evolutionary and environmental genomics. To better understand the logic of genetic network evolution, we combined comparative transcriptomics, a differential clustering algorithm and promoter analyses in a study of the evolution of transcriptional networks responding to an antifungal agent in two yeast species: the free-living model organism Saccharomyces cerevisiae and the human pathogen Candida glabrata. RESULTS: We found that although the gene expression patterns characterizing the response to drugs were remarkably conserved between the two species, part of the underlying regulatory networks differed. In particular, the roles of the oxidative stress response transcription factors ScYap1p (in S. cerevisiae) and Cgap1p (in C. glabrata) had diverged. The sets of genes whose benomyl response depends on these factors are significantly different. Also, the DNA motifs targeted by ScYap1p and Cgap1p are differently represented in the promoters of these genes, suggesting that the DNA binding properties of the two proteins are slightly different. Experimental assays of ScYap1p and Cgap1p activities in vivo were in accordance with this last observation. CONCLUSIONS: Based on these results and recently published data, we suggest that the robustness of environmental stress responses among related species contrasts with the rapid evolution of regulatory sequences, and depends on both the coevolution of transcription factor binding properties and the versatility of regulatory associations within transcriptional networks. More... »

PAGES

r164

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2008-9-11-r164

DOI

http://dx.doi.org/10.1186/gb-2008-9-11-r164

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047044266

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19025642


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Benomyl", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Candida glabrata", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungal Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungicides, Industrial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidative Stress", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Equipe de Bioinformatique G\u00e9nomique et Mol\u00e9culaire, INSERM UMR S726, Universit\u00e9 Paris 7, INTS, 6 rue Alexandre Cabanel, 75015, Paris, France", 
            "Laboratoire de G\u00e9n\u00e9tique Mol\u00e9culaire, CNRS UMR 8541, Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lelandais", 
        "givenName": "Ga\u00eblle", 
        "id": "sg:person.01177425164.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177425164.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Plate-forme transcriptome IFR 36, Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanty", 
        "givenName": "V\u00e9ronique", 
        "id": "sg:person.01155065407.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155065407.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Equipe de Bioinformatique G\u00e9nomique et Mol\u00e9culaire, INSERM UMR S726, Universit\u00e9 Paris 7, INTS, 6 rue Alexandre Cabanel, 75015, Paris, France", 
            "MTI, B\u00e2t. Lamarck, 35 rue H\u00e9l\u00e8ne Brion, 75205, Paris Cedex 13, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geneix", 
        "givenName": "Colette", 
        "id": "sg:person.01355146664.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355146664.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Equipe de Bioinformatique G\u00e9nomique et Mol\u00e9culaire, INSERM UMR S726, Universit\u00e9 Paris 7, INTS, 6 rue Alexandre Cabanel, 75015, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Etchebest", 
        "givenName": "Catherine", 
        "id": "sg:person.0704511425.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704511425.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de G\u00e9n\u00e9tique Mol\u00e9culaire, CNRS UMR 8541, Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex 05, France", 
            "Plate-forme transcriptome IFR 36, Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacq", 
        "givenName": "Claude", 
        "id": "sg:person.0613241513.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613241513.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de G\u00e9n\u00e9tique Mol\u00e9culaire, CNRS UMR 8541, Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Devaux", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.0661354713.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661354713.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0168-9525(03)00056-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000339597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(03)00056-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000339597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6754-9_1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000708121", 
          "https://doi.org/10.1007/978-1-4020-6754-9_1773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.091062498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001631710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.17.12.6982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001732972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/ec.00243-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002168370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003929920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.48.10.3773-3781.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004078495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006787034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007894801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009602763", 
          "https://doi.org/10.1186/1471-2105-5-114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010748281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.e06-09-0827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011202095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012915692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(03)00301-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014286094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.10.7.1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014879103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1140748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015171562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015200749", 
          "https://doi.org/10.1038/ng1819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015200749", 
          "https://doi.org/10.1038/ng1819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780090502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015538451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2006.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018551627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0060038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019382385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020174554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020174554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020372344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.50.4.1384-1392.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021263429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023635121", 
          "https://doi.org/10.1038/nature02579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023635121", 
          "https://doi.org/10.1038/nature02579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2005.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024131618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-7-r146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024475464", 
          "https://doi.org/10.1186/gb-2007-8-7-r146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0061(20000130)16:2<177::aid-yea516>3.0.co;2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024802561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.6.520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024880743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/ec.00256-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024953486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0308-303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025364910", 
          "https://doi.org/10.1038/nbt0308-303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0020106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025960444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026465198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026465198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027416268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027583858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2006.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027764113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029644746", 
          "https://doi.org/10.1186/1471-2105-5-179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1087447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031047936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.e05-06-0501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031179446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032266974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033085189", 
          "https://doi.org/10.1038/nature05099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033085189", 
          "https://doi.org/10.1038/nature05099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033085189", 
          "https://doi.org/10.1038/nature05099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2000-1-5-reviews0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034059959", 
          "https://doi.org/10.1186/gb-2000-1-5-reviews0005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m008377200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034733378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034856123", 
          "https://doi.org/10.1038/nature717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034856123", 
          "https://doi.org/10.1038/nature717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2006.05235.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035574034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036751784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037537394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2006.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040630933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-4-1-r4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041418495", 
          "https://doi.org/10.1186/gb-2002-4-1-r4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-7-232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043041377", 
          "https://doi.org/10.1186/gb-2004-5-7-232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6603(03)01008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044981642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.25.5.1860-1868.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045387911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045805302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.5197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046271071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2005.04917.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046379480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2005.04917.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046379480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0701068104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047694379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047724945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.11.12.4241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048274369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0010039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050451093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0010039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050451093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052601820", 
          "https://doi.org/10.1038/nature01763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052601820", 
          "https://doi.org/10.1038/nature01763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052608413", 
          "https://doi.org/10.1038/nature05186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052608413", 
          "https://doi.org/10.1038/nature05186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052608413", 
          "https://doi.org/10.1038/nature05186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi036112v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055198239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi036112v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055198239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.29277-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060397889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1090887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1113833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3870712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070468573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077688649", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1996.tb00576.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082890077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cmr.12.1.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083371080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4135/9781412963855.n943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088055773"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-11", 
    "datePublishedReg": "2008-11-01", 
    "description": "BACKGROUND: Recent technical and methodological advances have placed microbial models at the forefront of evolutionary and environmental genomics. To better understand the logic of genetic network evolution, we combined comparative transcriptomics, a differential clustering algorithm and promoter analyses in a study of the evolution of transcriptional networks responding to an antifungal agent in two yeast species: the free-living model organism Saccharomyces cerevisiae and the human pathogen Candida glabrata.\nRESULTS: We found that although the gene expression patterns characterizing the response to drugs were remarkably conserved between the two species, part of the underlying regulatory networks differed. In particular, the roles of the oxidative stress response transcription factors ScYap1p (in S. cerevisiae) and Cgap1p (in C. glabrata) had diverged. The sets of genes whose benomyl response depends on these factors are significantly different. Also, the DNA motifs targeted by ScYap1p and Cgap1p are differently represented in the promoters of these genes, suggesting that the DNA binding properties of the two proteins are slightly different. Experimental assays of ScYap1p and Cgap1p activities in vivo were in accordance with this last observation.\nCONCLUSIONS: Based on these results and recently published data, we suggest that the robustness of environmental stress responses among related species contrasts with the rapid evolution of regulatory sequences, and depends on both the coevolution of transcription factor binding properties and the versatility of regulatory associations within transcriptional networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2008-9-11-r164", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata", 
    "pagination": "r164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e01aaaaf8769d6de4786550cdabd9238c8006616f266efe4cb63f30a3f06f457"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19025642"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2008-9-11-r164"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047044266"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2008-9-11-r164", 
      "https://app.dimensions.ai/details/publication/pub.1047044266"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2008-9-11-r164"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2008-9-11-r164'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2008-9-11-r164'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2008-9-11-r164'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2008-9-11-r164'


 

This table displays all metadata directly associated to this object as RDF triples.

394 TRIPLES      21 PREDICATES      113 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2008-9-11-r164 schema:about N05c9f53a3d154337bb851fa77321fe23
2 N1a95666c3fc34fecaa59920052db6b73
3 N224d9f396153410783c0d2715aedc904
4 N3d9d7ef988ce4da78f25e2ff27c92f2e
5 N7d42ed4c2b2f4d158aaaba0aa49472a9
6 N80ec5bb3497b42f7a51aa1af028bf1cd
7 N8a45798194a943f1bd4ada8cbcf9598b
8 Nb83f615034964e2aae5ff1717e9a92c9
9 Nc5985c3dc8ff4883ad30ce144b33b549
10 Ncadca9c9f8184c958bc61fbb1f65bf11
11 Nd4395bc5eaa248e7a3a627748393e6e5
12 Nf6518c39469243b6933b02f637fa577a
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N116c84e9a8874e689f6141e338f8a59c
16 schema:citation sg:pub.10.1007/978-1-4020-6754-9_1773
17 sg:pub.10.1038/nature01644
18 sg:pub.10.1038/nature01763
19 sg:pub.10.1038/nature02579
20 sg:pub.10.1038/nature05099
21 sg:pub.10.1038/nature05186
22 sg:pub.10.1038/nature717
23 sg:pub.10.1038/nbt0308-303
24 sg:pub.10.1038/ng1819
25 sg:pub.10.1186/1471-2105-5-114
26 sg:pub.10.1186/1471-2105-5-179
27 sg:pub.10.1186/gb-2000-1-5-reviews0005
28 sg:pub.10.1186/gb-2002-4-1-r4
29 sg:pub.10.1186/gb-2004-5-7-232
30 sg:pub.10.1186/gb-2007-8-7-r146
31 https://app.dimensions.ai/details/publication/pub.1077688649
32 https://doi.org/10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-u
33 https://doi.org/10.1002/(sici)1097-0061(20000130)16:2<177::aid-yea516>3.0.co;2-9
34 https://doi.org/10.1002/j.1460-2075.1996.tb00576.x
35 https://doi.org/10.1002/sim.4780090502
36 https://doi.org/10.1006/jmbi.2000.3519
37 https://doi.org/10.1006/jmbi.2000.5197
38 https://doi.org/10.1016/j.gde.2005.09.005
39 https://doi.org/10.1016/j.gene.2006.08.010
40 https://doi.org/10.1016/j.sbi.2006.04.001
41 https://doi.org/10.1016/j.tig.2006.05.007
42 https://doi.org/10.1016/s0022-2836(05)80360-2
43 https://doi.org/10.1016/s0079-6603(03)01008-0
44 https://doi.org/10.1016/s0092-8674(03)00301-5
45 https://doi.org/10.1016/s0168-9525(03)00056-8
46 https://doi.org/10.1021/bi036112v
47 https://doi.org/10.1038/msb4100198
48 https://doi.org/10.1073/pnas.0701068104
49 https://doi.org/10.1073/pnas.091062498
50 https://doi.org/10.1073/pnas.95.25.14863
51 https://doi.org/10.1074/jbc.m008377200
52 https://doi.org/10.1091/mbc.11.12.4241
53 https://doi.org/10.1091/mbc.e05-06-0501
54 https://doi.org/10.1091/mbc.e06-09-0827
55 https://doi.org/10.1093/bioinformatics/17.6.520
56 https://doi.org/10.1093/bioinformatics/bti215
57 https://doi.org/10.1093/bioinformatics/btl087
58 https://doi.org/10.1093/bioinformatics/btl223
59 https://doi.org/10.1093/nar/gkg567
60 https://doi.org/10.1093/nar/gkg630
61 https://doi.org/10.1093/nar/gkh033
62 https://doi.org/10.1093/nar/gki107
63 https://doi.org/10.1093/nar/gkj145
64 https://doi.org/10.1093/nar/gkj160
65 https://doi.org/10.1093/nar/gkl887
66 https://doi.org/10.1099/mic.0.29277-0
67 https://doi.org/10.1105/tpc.10.7.1075
68 https://doi.org/10.1111/j.1365-2958.2005.04917.x
69 https://doi.org/10.1111/j.1365-2958.2006.05235.x
70 https://doi.org/10.1126/science.1087447
71 https://doi.org/10.1126/science.1090887
72 https://doi.org/10.1126/science.1113833
73 https://doi.org/10.1126/science.1140748
74 https://doi.org/10.1128/aac.48.10.3773-3781.2004
75 https://doi.org/10.1128/aac.50.4.1384-1392.2006
76 https://doi.org/10.1128/cmr.12.1.80
77 https://doi.org/10.1128/ec.00243-06
78 https://doi.org/10.1128/ec.00256-07
79 https://doi.org/10.1128/mcb.17.12.6982
80 https://doi.org/10.1128/mcb.25.5.1860-1868.2005
81 https://doi.org/10.1371/journal.pbio.0020009
82 https://doi.org/10.1371/journal.pbio.0020398
83 https://doi.org/10.1371/journal.pbio.0060038
84 https://doi.org/10.1371/journal.pcbi.0020106
85 https://doi.org/10.1371/journal.pgen.0010039
86 https://doi.org/10.2307/3870712
87 https://doi.org/10.4135/9781412963855.n943
88 schema:datePublished 2008-11
89 schema:datePublishedReg 2008-11-01
90 schema:description BACKGROUND: Recent technical and methodological advances have placed microbial models at the forefront of evolutionary and environmental genomics. To better understand the logic of genetic network evolution, we combined comparative transcriptomics, a differential clustering algorithm and promoter analyses in a study of the evolution of transcriptional networks responding to an antifungal agent in two yeast species: the free-living model organism Saccharomyces cerevisiae and the human pathogen Candida glabrata. RESULTS: We found that although the gene expression patterns characterizing the response to drugs were remarkably conserved between the two species, part of the underlying regulatory networks differed. In particular, the roles of the oxidative stress response transcription factors ScYap1p (in S. cerevisiae) and Cgap1p (in C. glabrata) had diverged. The sets of genes whose benomyl response depends on these factors are significantly different. Also, the DNA motifs targeted by ScYap1p and Cgap1p are differently represented in the promoters of these genes, suggesting that the DNA binding properties of the two proteins are slightly different. Experimental assays of ScYap1p and Cgap1p activities in vivo were in accordance with this last observation. CONCLUSIONS: Based on these results and recently published data, we suggest that the robustness of environmental stress responses among related species contrasts with the rapid evolution of regulatory sequences, and depends on both the coevolution of transcription factor binding properties and the versatility of regulatory associations within transcriptional networks.
91 schema:genre research_article
92 schema:inLanguage en
93 schema:isAccessibleForFree true
94 schema:isPartOf N9b48906cc1ce47b6af79c088fcf3f316
95 Necb4f989e2a14ddaa3210839abef0f6f
96 sg:journal.1023439
97 schema:name Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata
98 schema:pagination r164
99 schema:productId N04122656fd2343cf9f0ba7f4f0f6b6a6
100 N26e3a363de6c4fcab05c3ca5f842c36a
101 N564e6c92b34c4b5098a2f409e49216d9
102 N56e820ea4a834902a8ebfde60caa9e1b
103 N9478b366d3334609a190ff5d58543f61
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047044266
105 https://doi.org/10.1186/gb-2008-9-11-r164
106 schema:sdDatePublished 2019-04-10T13:18
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Nc21fc43adf6e46a9b78bc626493f6344
109 schema:url http://link.springer.com/10.1186%2Fgb-2008-9-11-r164
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N04122656fd2343cf9f0ba7f4f0f6b6a6 schema:name nlm_unique_id
114 schema:value 100960660
115 rdf:type schema:PropertyValue
116 N05c9f53a3d154337bb851fa77321fe23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Gene Expression Regulation, Fungal
118 rdf:type schema:DefinedTerm
119 N07296659dd1245cdac255d30872e9be0 schema:name Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex 05, France
120 rdf:type schema:Organization
121 N116c84e9a8874e689f6141e338f8a59c rdf:first sg:person.01177425164.58
122 rdf:rest Nf6bcbeaa227e4e0fab9c371e82b5604f
123 N1563ddc091a94e7abcc5f12f133e6de2 schema:name Equipe de Bioinformatique Génomique et Moléculaire, INSERM UMR S726, Université Paris 7, INTS, 6 rue Alexandre Cabanel, 75015, Paris, France
124 MTI, Bât. Lamarck, 35 rue Hélène Brion, 75205, Paris Cedex 13, France
125 rdf:type schema:Organization
126 N1a95666c3fc34fecaa59920052db6b73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Gene Regulatory Networks
128 rdf:type schema:DefinedTerm
129 N224d9f396153410783c0d2715aedc904 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Genome, Fungal
131 rdf:type schema:DefinedTerm
132 N26e3a363de6c4fcab05c3ca5f842c36a schema:name readcube_id
133 schema:value e01aaaaf8769d6de4786550cdabd9238c8006616f266efe4cb63f30a3f06f457
134 rdf:type schema:PropertyValue
135 N3d9d7ef988ce4da78f25e2ff27c92f2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Benomyl
137 rdf:type schema:DefinedTerm
138 N564e6c92b34c4b5098a2f409e49216d9 schema:name doi
139 schema:value 10.1186/gb-2008-9-11-r164
140 rdf:type schema:PropertyValue
141 N56e820ea4a834902a8ebfde60caa9e1b schema:name pubmed_id
142 schema:value 19025642
143 rdf:type schema:PropertyValue
144 N7d42ed4c2b2f4d158aaaba0aa49472a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Fungal Proteins
146 rdf:type schema:DefinedTerm
147 N80ec5bb3497b42f7a51aa1af028bf1cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Saccharomyces cerevisiae
149 rdf:type schema:DefinedTerm
150 N8a45798194a943f1bd4ada8cbcf9598b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Oxidative Stress
152 rdf:type schema:DefinedTerm
153 N8f624e6fdbd74a0ab4d5537036556125 schema:name Equipe de Bioinformatique Génomique et Moléculaire, INSERM UMR S726, Université Paris 7, INTS, 6 rue Alexandre Cabanel, 75015, Paris, France
154 Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex 05, France
155 rdf:type schema:Organization
156 N9478b366d3334609a190ff5d58543f61 schema:name dimensions_id
157 schema:value pub.1047044266
158 rdf:type schema:PropertyValue
159 N96cffc29b26040b2bd8791433e70b59c schema:name Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex 05, France
160 Plate-forme transcriptome IFR 36, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex 05, France
161 rdf:type schema:Organization
162 N9b48906cc1ce47b6af79c088fcf3f316 schema:volumeNumber 9
163 rdf:type schema:PublicationVolume
164 Nb83f615034964e2aae5ff1717e9a92c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Fungicides, Industrial
166 rdf:type schema:DefinedTerm
167 Nc216a7b5ec7c4785831ce78159242d2b rdf:first sg:person.01355146664.20
168 rdf:rest Nfefa1a8111ef4888b96e5acdfaa6baf7
169 Nc21fc43adf6e46a9b78bc626493f6344 schema:name Springer Nature - SN SciGraph project
170 rdf:type schema:Organization
171 Nc5985c3dc8ff4883ad30ce144b33b549 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Saccharomyces cerevisiae Proteins
173 rdf:type schema:DefinedTerm
174 Nc7a55b8d6080413a988718d40b4b942f rdf:first sg:person.0613241513.43
175 rdf:rest Nfd36f018bf9c450286776a41d793b6bc
176 Ncadca9c9f8184c958bc61fbb1f65bf11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Gene Expression Profiling
178 rdf:type schema:DefinedTerm
179 Nd4395bc5eaa248e7a3a627748393e6e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Transcription Factors
181 rdf:type schema:DefinedTerm
182 Nd43d47590a494e0eaa2933da20697617 schema:name Plate-forme transcriptome IFR 36, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex 05, France
183 rdf:type schema:Organization
184 Necb4f989e2a14ddaa3210839abef0f6f schema:issueNumber 11
185 rdf:type schema:PublicationIssue
186 Nf6518c39469243b6933b02f637fa577a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Candida glabrata
188 rdf:type schema:DefinedTerm
189 Nf6bcbeaa227e4e0fab9c371e82b5604f rdf:first sg:person.01155065407.27
190 rdf:rest Nc216a7b5ec7c4785831ce78159242d2b
191 Nfcc4a21b48544766929e81f8aa99baba schema:name Equipe de Bioinformatique Génomique et Moléculaire, INSERM UMR S726, Université Paris 7, INTS, 6 rue Alexandre Cabanel, 75015, Paris, France
192 rdf:type schema:Organization
193 Nfd36f018bf9c450286776a41d793b6bc rdf:first sg:person.0661354713.20
194 rdf:rest rdf:nil
195 Nfefa1a8111ef4888b96e5acdfaa6baf7 rdf:first sg:person.0704511425.55
196 rdf:rest Nc7a55b8d6080413a988718d40b4b942f
197 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
198 schema:name Biological Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
201 schema:name Genetics
202 rdf:type schema:DefinedTerm
203 sg:journal.1023439 schema:issn 1465-6906
204 1474-760X
205 schema:name Genome Biology
206 rdf:type schema:Periodical
207 sg:person.01155065407.27 schema:affiliation Nd43d47590a494e0eaa2933da20697617
208 schema:familyName Tanty
209 schema:givenName Véronique
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155065407.27
211 rdf:type schema:Person
212 sg:person.01177425164.58 schema:affiliation N8f624e6fdbd74a0ab4d5537036556125
213 schema:familyName Lelandais
214 schema:givenName Gaëlle
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177425164.58
216 rdf:type schema:Person
217 sg:person.01355146664.20 schema:affiliation N1563ddc091a94e7abcc5f12f133e6de2
218 schema:familyName Geneix
219 schema:givenName Colette
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355146664.20
221 rdf:type schema:Person
222 sg:person.0613241513.43 schema:affiliation N96cffc29b26040b2bd8791433e70b59c
223 schema:familyName Jacq
224 schema:givenName Claude
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613241513.43
226 rdf:type schema:Person
227 sg:person.0661354713.20 schema:affiliation N07296659dd1245cdac255d30872e9be0
228 schema:familyName Devaux
229 schema:givenName Frédéric
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661354713.20
231 rdf:type schema:Person
232 sg:person.0704511425.55 schema:affiliation Nfcc4a21b48544766929e81f8aa99baba
233 schema:familyName Etchebest
234 schema:givenName Catherine
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704511425.55
236 rdf:type schema:Person
237 sg:pub.10.1007/978-1-4020-6754-9_1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000708121
238 https://doi.org/10.1007/978-1-4020-6754-9_1773
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/nature01644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517605
241 https://doi.org/10.1038/nature01644
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/nature01763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052601820
244 https://doi.org/10.1038/nature01763
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/nature02579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023635121
247 https://doi.org/10.1038/nature02579
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/nature05099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033085189
250 https://doi.org/10.1038/nature05099
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/nature05186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052608413
253 https://doi.org/10.1038/nature05186
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/nature717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034856123
256 https://doi.org/10.1038/nature717
257 rdf:type schema:CreativeWork
258 sg:pub.10.1038/nbt0308-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025364910
259 https://doi.org/10.1038/nbt0308-303
260 rdf:type schema:CreativeWork
261 sg:pub.10.1038/ng1819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015200749
262 https://doi.org/10.1038/ng1819
263 rdf:type schema:CreativeWork
264 sg:pub.10.1186/1471-2105-5-114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009602763
265 https://doi.org/10.1186/1471-2105-5-114
266 rdf:type schema:CreativeWork
267 sg:pub.10.1186/1471-2105-5-179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029644746
268 https://doi.org/10.1186/1471-2105-5-179
269 rdf:type schema:CreativeWork
270 sg:pub.10.1186/gb-2000-1-5-reviews0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034059959
271 https://doi.org/10.1186/gb-2000-1-5-reviews0005
272 rdf:type schema:CreativeWork
273 sg:pub.10.1186/gb-2002-4-1-r4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041418495
274 https://doi.org/10.1186/gb-2002-4-1-r4
275 rdf:type schema:CreativeWork
276 sg:pub.10.1186/gb-2004-5-7-232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043041377
277 https://doi.org/10.1186/gb-2004-5-7-232
278 rdf:type schema:CreativeWork
279 sg:pub.10.1186/gb-2007-8-7-r146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024475464
280 https://doi.org/10.1186/gb-2007-8-7-r146
281 rdf:type schema:CreativeWork
282 https://app.dimensions.ai/details/publication/pub.1077688649 schema:CreativeWork
283 https://doi.org/10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1026465198
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1002/(sici)1097-0061(20000130)16:2<177::aid-yea516>3.0.co;2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024802561
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1002/j.1460-2075.1996.tb00576.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1082890077
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1002/sim.4780090502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015538451
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1006/jmbi.2000.3519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037537394
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1006/jmbi.2000.5197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046271071
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/j.gde.2005.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024131618
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/j.gene.2006.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018551627
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1016/j.sbi.2006.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040630933
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1016/j.tig.2006.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027764113
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1016/s0079-6603(03)01008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044981642
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1016/s0092-8674(03)00301-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014286094
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1016/s0168-9525(03)00056-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000339597
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1021/bi036112v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055198239
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1038/msb4100198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020174554
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1073/pnas.0701068104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047694379
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1073/pnas.091062498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001631710
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1074/jbc.m008377200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034733378
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1091/mbc.11.12.4241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048274369
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1091/mbc.e05-06-0501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031179446
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1091/mbc.e06-09-0827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011202095
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1093/bioinformatics/17.6.520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024880743
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1093/bioinformatics/bti215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045805302
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1093/bioinformatics/btl087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007894801
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1093/bioinformatics/btl223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006787034
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1093/nar/gkg567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003929920
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1093/nar/gkg630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020372344
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1093/nar/gkh033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047724945
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1093/nar/gki107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032266974
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1093/nar/gkj145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010748281
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1093/nar/gkj160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027583858
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1093/nar/gkl887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036751784
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1099/mic.0.29277-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060397889
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1105/tpc.10.7.1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014879103
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1111/j.1365-2958.2005.04917.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046379480
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1111/j.1365-2958.2006.05235.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035574034
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1126/science.1087447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031047936
360 rdf:type schema:CreativeWork
361 https://doi.org/10.1126/science.1090887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449045
362 rdf:type schema:CreativeWork
363 https://doi.org/10.1126/science.1113833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452310
364 rdf:type schema:CreativeWork
365 https://doi.org/10.1126/science.1140748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015171562
366 rdf:type schema:CreativeWork
367 https://doi.org/10.1128/aac.48.10.3773-3781.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004078495
368 rdf:type schema:CreativeWork
369 https://doi.org/10.1128/aac.50.4.1384-1392.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021263429
370 rdf:type schema:CreativeWork
371 https://doi.org/10.1128/cmr.12.1.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083371080
372 rdf:type schema:CreativeWork
373 https://doi.org/10.1128/ec.00243-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002168370
374 rdf:type schema:CreativeWork
375 https://doi.org/10.1128/ec.00256-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024953486
376 rdf:type schema:CreativeWork
377 https://doi.org/10.1128/mcb.17.12.6982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001732972
378 rdf:type schema:CreativeWork
379 https://doi.org/10.1128/mcb.25.5.1860-1868.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045387911
380 rdf:type schema:CreativeWork
381 https://doi.org/10.1371/journal.pbio.0020009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027416268
382 rdf:type schema:CreativeWork
383 https://doi.org/10.1371/journal.pbio.0020398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012915692
384 rdf:type schema:CreativeWork
385 https://doi.org/10.1371/journal.pbio.0060038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019382385
386 rdf:type schema:CreativeWork
387 https://doi.org/10.1371/journal.pcbi.0020106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025960444
388 rdf:type schema:CreativeWork
389 https://doi.org/10.1371/journal.pgen.0010039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050451093
390 rdf:type schema:CreativeWork
391 https://doi.org/10.2307/3870712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070468573
392 rdf:type schema:CreativeWork
393 https://doi.org/10.4135/9781412963855.n943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088055773
394 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...