An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-08

AUTHORS

Andrew E Teschendorff, Ahmad Miremadi, Sarah E Pinder, Ian O Ellis, Carlos Caldas

ABSTRACT

BACKGROUND: Estrogen receptor (ER)-negative breast cancer specimens are predominantly of high grade, have frequent p53 mutations, and are broadly divided into HER2-positive and basal subtypes. Although ER-negative disease has overall worse prognosis than does ER-positive breast cancer, not all ER-negative breast cancer patients have poor clinical outcome. Reliable identification of ER-negative tumors that have a good prognosis is not yet possible. RESULTS: We apply a recently proposed feature selection method in an integrative analysis of three major microarray expression datasets to identify molecular subclasses and prognostic markers in ER-negative breast cancer. We find a subclass of basal tumors, characterized by over-expression of immune response genes, which has a better prognosis than the rest of ER-negative breast cancers. Moreover, we show that, in contrast to ER-positive tumours, the majority of prognostic markers in ER-negative breast cancer are over-expressed in the good prognosis group and are associated with activation of complement and immune response pathways. Specifically, we identify an immune response related seven-gene module and show that downregulation of this module confers greater risk for distant metastasis (hazard ratio 2.02, 95% confidence interval 1.2-3.4; P = 0.009), independent of lymph node status and lymphocytic infiltration. Furthermore, we validate the immune response module using two additional independent datasets. CONCLUSION: We show that ER-negative basal breast cancer is a heterogeneous disease with at least four main subtypes. Furthermore, we show that the heterogeneity in clinical outcome of ER-negative breast cancer is related to the variability in expression levels of complement and immune response pathway genes, independent of lymphocytic infiltration. More... »

PAGES

r157

References to SciGraph publications

  • 2005-07. Identification of molecular apocrine breast tumours by microarray analysis in ONCOGENE
  • 2007-03. A gene-expression signature to predict survival in breast cancer across independent data sets in ONCOGENE
  • 2000-08. Molecular portraits of human breast tumours in NATURE
  • 2006-04. Gene expression profiling of breast cell lines identifies potential new basal markers in ONCOGENE
  • 1995. Developments in Probabilistic Modelling with Neural Networks — Ensemble Learning in NEURAL NETWORKS: ARTIFICIAL INTELLIGENCE AND INDUSTRIAL APPLICATIONS
  • 2007-02. Basal-like phenotype is not associated with patient survival in estrogen-receptor-negative breast cancers in BREAST CANCER RESEARCH
  • 2004-12. GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies in BMC BIOINFORMATICS
  • 2002-01. Gene expression profiling predicts clinical outcome of breast cancer in NATURE
  • 2006-06. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen in ONCOGENE
  • 2006-12. The molecular portraits of breast tumors are conserved across microarray platforms in BMC GENOMICS
  • 2004-12. PyEvolve: a toolkit for statistical modelling of molecular evolution in BMC BIOINFORMATICS
  • 2006-04. A consensus prognostic gene expression classifier for ER positive breast cancer in GENOME BIOLOGY
  • 2006-02. The pattern of clinical breast cancer metastasis correlates with a single nucleotide polymorphism in the C1qA component of complement in IMMUNOGENETICS
  • 1998-08. Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas in VIRCHOWS ARCHIV
  • 2005-12. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts in BREAST CANCER RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/gb-2007-8-8-r157

    DOI

    http://dx.doi.org/10.1186/gb-2007-8-8-r157

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052735338

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17683518


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, BRCA1", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymph Nodes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Estrogen", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Breast Cancer Functional Genomics Laboratory, Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Robinson Way, CB2 0RE, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Teschendorff", 
            "givenName": "Andrew E", 
            "id": "sg:person.01317257236.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317257236.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Addenbrooke's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.120073.7", 
              "name": [
                "Cambridge Breast Unit, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, CB2 0QQ, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miremadi", 
            "givenName": "Ahmad", 
            "id": "sg:person.01242254411.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242254411.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Addenbrooke's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.120073.7", 
              "name": [
                "Cambridge Breast Unit, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, CB2 0QQ, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pinder", 
            "givenName": "Sarah E", 
            "id": "sg:person.014576043464.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014576043464.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Histopathology, Nottingham City Hospital NHS Trust and Department of Pathology, University of Nottingham, NG5 1PB, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ellis", 
            "givenName": "Ian O", 
            "id": "sg:person.01054612302.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054612302.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Addenbrooke's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.120073.7", 
              "name": [
                "Breast Cancer Functional Genomics Laboratory, Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Robinson Way, CB2 0RE, Cambridge, UK", 
                "Cambridge Breast Unit, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, CB2 0QQ, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caldas", 
            "givenName": "Carlos", 
            "id": "sg:person.01072152660.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072152660.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.1732912100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000610606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506230102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002515049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1541-7786.mcr-06-0250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006832243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0932692100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007535956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1699-0463.1988.tb00971.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011387049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1699-0463.1988.tb00971.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011387049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr1649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012630585", 
              "https://doi.org/10.1186/bcr1649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr1649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012630585", 
              "https://doi.org/10.1186/bcr1649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2559.2007.02638.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012730868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-7-96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015725266", 
              "https://doi.org/10.1186/1471-2164-7-96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016075133", 
              "https://doi.org/10.1186/1471-2105-5-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0530258100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016312020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-06-0031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017558190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00251-005-0077-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017792984", 
              "https://doi.org/10.1007/s00251-005-0077-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00251-005-0077-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017792984", 
              "https://doi.org/10.1007/s00251-005-0077-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa041588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022156409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr1325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023450491", 
              "https://doi.org/10.1186/bcr1325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr1325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023450491", 
              "https://doi.org/10.1186/bcr1325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004280050226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023739086", 
              "https://doi.org/10.1007/s004280050226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024977029", 
              "https://doi.org/10.1038/sj.onc.1209920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024977029", 
              "https://doi.org/10.1038/sj.onc.1209920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027816214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-9440(10)64476-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028127533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(03)13308-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028468615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/17.10.977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029038829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/30.1.38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030186249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/djj052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030644591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0959-8049(92)90134-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031481929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000227472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031560860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2353/ajpath.2006.051152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031916133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033139728", 
              "https://doi.org/10.1186/1471-2105-5-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033139728", 
              "https://doi.org/10.1186/1471-2105-5-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2005.03.9115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033715812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35021093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033846543", 
              "https://doi.org/10.1038/35021093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejca.2004.02.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035505159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cncr.22381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036147682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1208561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036436999", 
              "https://doi.org/10.1038/sj.onc.1208561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1208561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036436999", 
              "https://doi.org/10.1038/sj.onc.1208561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1208561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036436999", 
              "https://doi.org/10.1038/sj.onc.1208561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.082099299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037994416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa021967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038600096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039718069", 
              "https://doi.org/10.1038/sj.onc.1209415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039718069", 
              "https://doi.org/10.1038/sj.onc.1209415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-3087-1_37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040170427", 
              "https://doi.org/10.1007/978-1-4471-3087-1_37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041700730", 
              "https://doi.org/10.1038/sj.onc.1209254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041700730", 
              "https://doi.org/10.1038/sj.onc.1209254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041700730", 
              "https://doi.org/10.1038/sj.onc.1209254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415530a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043001094", 
              "https://doi.org/10.1038/415530a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415530a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043001094", 
              "https://doi.org/10.1038/415530a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2559.2006.02410.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043360420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-05-1580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044274920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1530509100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044620917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176344136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044872629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047084748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejca.2006.08.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047633904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(05)17947-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047788005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2006-7-10-r101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049083057", 
              "https://doi.org/10.1186/gb-2006-7-10-r101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.2910490109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052888607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.03.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052922403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2005.03.3845", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064204218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2684482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070057846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078358985", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.1994.12.5.888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082681114"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-08", 
        "datePublishedReg": "2007-08-01", 
        "description": "BACKGROUND: Estrogen receptor (ER)-negative breast cancer specimens are predominantly of high grade, have frequent p53 mutations, and are broadly divided into HER2-positive and basal subtypes. Although ER-negative disease has overall worse prognosis than does ER-positive breast cancer, not all ER-negative breast cancer patients have poor clinical outcome. Reliable identification of ER-negative tumors that have a good prognosis is not yet possible.\nRESULTS: We apply a recently proposed feature selection method in an integrative analysis of three major microarray expression datasets to identify molecular subclasses and prognostic markers in ER-negative breast cancer. We find a subclass of basal tumors, characterized by over-expression of immune response genes, which has a better prognosis than the rest of ER-negative breast cancers. Moreover, we show that, in contrast to ER-positive tumours, the majority of prognostic markers in ER-negative breast cancer are over-expressed in the good prognosis group and are associated with activation of complement and immune response pathways. Specifically, we identify an immune response related seven-gene module and show that downregulation of this module confers greater risk for distant metastasis (hazard ratio 2.02, 95% confidence interval 1.2-3.4; P = 0.009), independent of lymph node status and lymphocytic infiltration. Furthermore, we validate the immune response module using two additional independent datasets.\nCONCLUSION: We show that ER-negative basal breast cancer is a heterogeneous disease with at least four main subtypes. Furthermore, we show that the heterogeneity in clinical outcome of ER-negative breast cancer is related to the variability in expression levels of complement and immune response pathway genes, independent of lymphocytic infiltration.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/gb-2007-8-8-r157", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer", 
        "pagination": "r157", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb31ba645d69000616f1341cdfe6441a47bbd1a73a244ff6ba480fc128492780"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17683518"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100960660"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/gb-2007-8-8-r157"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052735338"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/gb-2007-8-8-r157", 
          "https://app.dimensions.ai/details/publication/pub.1052735338"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000516.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fgb-2007-8-8-r157"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2007-8-8-r157'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2007-8-8-r157'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2007-8-8-r157'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2007-8-8-r157'


     

    This table displays all metadata directly associated to this object as RDF triples.

    323 TRIPLES      21 PREDICATES      93 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/gb-2007-8-8-r157 schema:about N1d60bd151b684390b25100517271c887
    2 N2929dcea2bf14bbe9f2b1f3cf44697fb
    3 N3d83ed14302347948d7c8fa9b2f6ad80
    4 N6f03bfd7c68740a0b55f71cb3373b0c9
    5 N86665d85a7a448ca8b76fef4cc8984cc
    6 Nc6802c2b5bb043ffa2136b718e683a0b
    7 Nd225662238204d029cfd6abe4731943b
    8 Nd9f321ff373f43d8b0688ea328bd4bac
    9 Ndca269de8f6e4690aa1ba7d27d03c759
    10 Ne0a3c80069c540c0b1d0988e84caaee9
    11 Nf465a54c6ac84fc0b39c5f0eb63d6624
    12 Nf52b7106d3fb43c9bcfe3f7a1f1617cc
    13 Nfb6c519613234a359754267dc7b34290
    14 anzsrc-for:11
    15 anzsrc-for:1112
    16 schema:author Na1d37124ec4b4e3f9c393202983eb72d
    17 schema:citation sg:pub.10.1007/978-1-4471-3087-1_37
    18 sg:pub.10.1007/s00251-005-0077-y
    19 sg:pub.10.1007/s004280050226
    20 sg:pub.10.1038/35021093
    21 sg:pub.10.1038/415530a
    22 sg:pub.10.1038/sj.onc.1208561
    23 sg:pub.10.1038/sj.onc.1209254
    24 sg:pub.10.1038/sj.onc.1209415
    25 sg:pub.10.1038/sj.onc.1209920
    26 sg:pub.10.1186/1471-2105-5-1
    27 sg:pub.10.1186/1471-2105-5-16
    28 sg:pub.10.1186/1471-2164-7-96
    29 sg:pub.10.1186/bcr1325
    30 sg:pub.10.1186/bcr1649
    31 sg:pub.10.1186/gb-2006-7-10-r101
    32 https://app.dimensions.ai/details/publication/pub.1078358985
    33 https://doi.org/10.1002/cncr.22381
    34 https://doi.org/10.1002/ijc.2910490109
    35 https://doi.org/10.1016/0959-8049(92)90134-n
    36 https://doi.org/10.1016/j.cell.2007.03.052
    37 https://doi.org/10.1016/j.ejca.2004.02.025
    38 https://doi.org/10.1016/j.ejca.2006.08.015
    39 https://doi.org/10.1016/s0002-9440(10)64476-8
    40 https://doi.org/10.1016/s0140-6736(03)13308-9
    41 https://doi.org/10.1016/s0140-6736(05)17947-1
    42 https://doi.org/10.1056/nejmoa021967
    43 https://doi.org/10.1056/nejmoa041588
    44 https://doi.org/10.1073/pnas.0506230102
    45 https://doi.org/10.1073/pnas.0530258100
    46 https://doi.org/10.1073/pnas.082099299
    47 https://doi.org/10.1073/pnas.0932692100
    48 https://doi.org/10.1073/pnas.1530509100
    49 https://doi.org/10.1073/pnas.1732912100
    50 https://doi.org/10.1093/bioinformatics/17.10.977
    51 https://doi.org/10.1093/bioinformatics/bti466
    52 https://doi.org/10.1093/bioinformatics/btl174
    53 https://doi.org/10.1093/jnci/djj052
    54 https://doi.org/10.1093/nar/30.1.38
    55 https://doi.org/10.1111/j.1365-2559.2006.02410.x
    56 https://doi.org/10.1111/j.1365-2559.2007.02638.x
    57 https://doi.org/10.1111/j.1699-0463.1988.tb00971.x
    58 https://doi.org/10.1158/0008-5472.can-06-0031
    59 https://doi.org/10.1158/1078-0432.ccr-05-1580
    60 https://doi.org/10.1158/1541-7786.mcr-06-0250
    61 https://doi.org/10.1159/000227472
    62 https://doi.org/10.1200/jco.1994.12.5.888
    63 https://doi.org/10.1200/jco.2005.03.3845
    64 https://doi.org/10.1200/jco.2005.03.9115
    65 https://doi.org/10.1214/aos/1176344136
    66 https://doi.org/10.2307/2684482
    67 https://doi.org/10.2353/ajpath.2006.051152
    68 schema:datePublished 2007-08
    69 schema:datePublishedReg 2007-08-01
    70 schema:description BACKGROUND: Estrogen receptor (ER)-negative breast cancer specimens are predominantly of high grade, have frequent p53 mutations, and are broadly divided into HER2-positive and basal subtypes. Although ER-negative disease has overall worse prognosis than does ER-positive breast cancer, not all ER-negative breast cancer patients have poor clinical outcome. Reliable identification of ER-negative tumors that have a good prognosis is not yet possible. RESULTS: We apply a recently proposed feature selection method in an integrative analysis of three major microarray expression datasets to identify molecular subclasses and prognostic markers in ER-negative breast cancer. We find a subclass of basal tumors, characterized by over-expression of immune response genes, which has a better prognosis than the rest of ER-negative breast cancers. Moreover, we show that, in contrast to ER-positive tumours, the majority of prognostic markers in ER-negative breast cancer are over-expressed in the good prognosis group and are associated with activation of complement and immune response pathways. Specifically, we identify an immune response related seven-gene module and show that downregulation of this module confers greater risk for distant metastasis (hazard ratio 2.02, 95% confidence interval 1.2-3.4; P = 0.009), independent of lymph node status and lymphocytic infiltration. Furthermore, we validate the immune response module using two additional independent datasets. CONCLUSION: We show that ER-negative basal breast cancer is a heterogeneous disease with at least four main subtypes. Furthermore, we show that the heterogeneity in clinical outcome of ER-negative breast cancer is related to the variability in expression levels of complement and immune response pathway genes, independent of lymphocytic infiltration.
    71 schema:genre research_article
    72 schema:inLanguage en
    73 schema:isAccessibleForFree true
    74 schema:isPartOf N6889ec1ee73040f3a054692b4dbeb7f6
    75 Nc34d1234484e4e61aea17917a4888e87
    76 sg:journal.1023439
    77 schema:name An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer
    78 schema:pagination r157
    79 schema:productId N5a4c0b5fd6da4704a2c32e42711044cb
    80 N658e9a2c2ace4908b3fa387dc07d02f3
    81 N871367f1a8934300976ec11cdc7eebe4
    82 Nca58147892dd4647a43143d275b40119
    83 Ncdf10d870ce547608fbd07e08a8201aa
    84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052735338
    85 https://doi.org/10.1186/gb-2007-8-8-r157
    86 schema:sdDatePublished 2019-04-10T19:58
    87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    88 schema:sdPublisher Nbce36b075af34a1fb4ff20dd1deb2165
    89 schema:url http://link.springer.com/10.1186%2Fgb-2007-8-8-r157
    90 sgo:license sg:explorer/license/
    91 sgo:sdDataset articles
    92 rdf:type schema:ScholarlyArticle
    93 N077744d6eb844aa48fcca132fab7a2bc rdf:first sg:person.014576043464.09
    94 rdf:rest N9826392b72ae4c34bd945f8595569a7f
    95 N1d60bd151b684390b25100517271c887 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Humans
    97 rdf:type schema:DefinedTerm
    98 N2929dcea2bf14bbe9f2b1f3cf44697fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Immunity
    100 rdf:type schema:DefinedTerm
    101 N3d83ed14302347948d7c8fa9b2f6ad80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Pattern Recognition, Automated
    103 rdf:type schema:DefinedTerm
    104 N5a4c0b5fd6da4704a2c32e42711044cb schema:name nlm_unique_id
    105 schema:value 100960660
    106 rdf:type schema:PropertyValue
    107 N658e9a2c2ace4908b3fa387dc07d02f3 schema:name dimensions_id
    108 schema:value pub.1052735338
    109 rdf:type schema:PropertyValue
    110 N6889ec1ee73040f3a054692b4dbeb7f6 schema:issueNumber 8
    111 rdf:type schema:PublicationIssue
    112 N6f03bfd7c68740a0b55f71cb3373b0c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Female
    114 rdf:type schema:DefinedTerm
    115 N86665d85a7a448ca8b76fef4cc8984cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Prognosis
    117 rdf:type schema:DefinedTerm
    118 N871367f1a8934300976ec11cdc7eebe4 schema:name pubmed_id
    119 schema:value 17683518
    120 rdf:type schema:PropertyValue
    121 N9826392b72ae4c34bd945f8595569a7f rdf:first sg:person.01054612302.65
    122 rdf:rest Na0d32d1c2f4b4624b1ba3330e2bf0485
    123 Na0d32d1c2f4b4624b1ba3330e2bf0485 rdf:first sg:person.01072152660.47
    124 rdf:rest rdf:nil
    125 Na1d37124ec4b4e3f9c393202983eb72d rdf:first sg:person.01317257236.92
    126 rdf:rest Na444e692685c46fbb4912731d05ba79b
    127 Na444e692685c46fbb4912731d05ba79b rdf:first sg:person.01242254411.50
    128 rdf:rest N077744d6eb844aa48fcca132fab7a2bc
    129 Nbce36b075af34a1fb4ff20dd1deb2165 schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 Nc34d1234484e4e61aea17917a4888e87 schema:volumeNumber 8
    132 rdf:type schema:PublicationVolume
    133 Nc6802c2b5bb043ffa2136b718e683a0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Genes, BRCA1
    135 rdf:type schema:DefinedTerm
    136 Nca58147892dd4647a43143d275b40119 schema:name doi
    137 schema:value 10.1186/gb-2007-8-8-r157
    138 rdf:type schema:PropertyValue
    139 Ncdf10d870ce547608fbd07e08a8201aa schema:name readcube_id
    140 schema:value fb31ba645d69000616f1341cdfe6441a47bbd1a73a244ff6ba480fc128492780
    141 rdf:type schema:PropertyValue
    142 Nd225662238204d029cfd6abe4731943b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Gene Expression
    144 rdf:type schema:DefinedTerm
    145 Nd9f321ff373f43d8b0688ea328bd4bac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Databases, Genetic
    147 rdf:type schema:DefinedTerm
    148 Ndca269de8f6e4690aa1ba7d27d03c759 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Receptors, Estrogen
    150 rdf:type schema:DefinedTerm
    151 Ne0a3c80069c540c0b1d0988e84caaee9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Lymph Nodes
    153 rdf:type schema:DefinedTerm
    154 Nf465a54c6ac84fc0b39c5f0eb63d6624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Breast Neoplasms
    156 rdf:type schema:DefinedTerm
    157 Nf52b7106d3fb43c9bcfe3f7a1f1617cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Oligonucleotide Array Sequence Analysis
    159 rdf:type schema:DefinedTerm
    160 Nfb6c519613234a359754267dc7b34290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Biomarkers, Tumor
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Medical and Health Sciences
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Oncology and Carcinogenesis
    168 rdf:type schema:DefinedTerm
    169 sg:journal.1023439 schema:issn 1465-6906
    170 1474-760X
    171 schema:name Genome Biology
    172 rdf:type schema:Periodical
    173 sg:person.01054612302.65 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    174 schema:familyName Ellis
    175 schema:givenName Ian O
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054612302.65
    177 rdf:type schema:Person
    178 sg:person.01072152660.47 schema:affiliation https://www.grid.ac/institutes/grid.120073.7
    179 schema:familyName Caldas
    180 schema:givenName Carlos
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072152660.47
    182 rdf:type schema:Person
    183 sg:person.01242254411.50 schema:affiliation https://www.grid.ac/institutes/grid.120073.7
    184 schema:familyName Miremadi
    185 schema:givenName Ahmad
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242254411.50
    187 rdf:type schema:Person
    188 sg:person.01317257236.92 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    189 schema:familyName Teschendorff
    190 schema:givenName Andrew E
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317257236.92
    192 rdf:type schema:Person
    193 sg:person.014576043464.09 schema:affiliation https://www.grid.ac/institutes/grid.120073.7
    194 schema:familyName Pinder
    195 schema:givenName Sarah E
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014576043464.09
    197 rdf:type schema:Person
    198 sg:pub.10.1007/978-1-4471-3087-1_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170427
    199 https://doi.org/10.1007/978-1-4471-3087-1_37
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00251-005-0077-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017792984
    202 https://doi.org/10.1007/s00251-005-0077-y
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s004280050226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023739086
    205 https://doi.org/10.1007/s004280050226
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
    208 https://doi.org/10.1038/35021093
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
    211 https://doi.org/10.1038/415530a
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/sj.onc.1208561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036436999
    214 https://doi.org/10.1038/sj.onc.1208561
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/sj.onc.1209254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041700730
    217 https://doi.org/10.1038/sj.onc.1209254
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/sj.onc.1209415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039718069
    220 https://doi.org/10.1038/sj.onc.1209415
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/sj.onc.1209920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024977029
    223 https://doi.org/10.1038/sj.onc.1209920
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1186/1471-2105-5-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016075133
    226 https://doi.org/10.1186/1471-2105-5-1
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1186/1471-2105-5-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033139728
    229 https://doi.org/10.1186/1471-2105-5-16
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1186/1471-2164-7-96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015725266
    232 https://doi.org/10.1186/1471-2164-7-96
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1186/bcr1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023450491
    235 https://doi.org/10.1186/bcr1325
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/bcr1649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012630585
    238 https://doi.org/10.1186/bcr1649
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1186/gb-2006-7-10-r101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049083057
    241 https://doi.org/10.1186/gb-2006-7-10-r101
    242 rdf:type schema:CreativeWork
    243 https://app.dimensions.ai/details/publication/pub.1078358985 schema:CreativeWork
    244 https://doi.org/10.1002/cncr.22381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036147682
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1002/ijc.2910490109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052888607
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/0959-8049(92)90134-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1031481929
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/j.cell.2007.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052922403
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1016/j.ejca.2004.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035505159
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1016/j.ejca.2006.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047633904
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1016/s0002-9440(10)64476-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028127533
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1016/s0140-6736(03)13308-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028468615
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1016/s0140-6736(05)17947-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788005
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1056/nejmoa021967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038600096
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1056/nejmoa041588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022156409
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1073/pnas.0506230102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002515049
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1073/pnas.0530258100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016312020
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1073/pnas.082099299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037994416
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1073/pnas.0932692100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007535956
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1073/pnas.1530509100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620917
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1073/pnas.1732912100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000610606
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1093/bioinformatics/17.10.977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029038829
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1093/bioinformatics/bti466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047084748
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1093/bioinformatics/btl174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027816214
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1093/jnci/djj052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030644591
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1093/nar/30.1.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030186249
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1111/j.1365-2559.2006.02410.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043360420
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1111/j.1365-2559.2007.02638.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012730868
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1111/j.1699-0463.1988.tb00971.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011387049
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1158/0008-5472.can-06-0031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017558190
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1158/1078-0432.ccr-05-1580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044274920
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1158/1541-7786.mcr-06-0250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006832243
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1159/000227472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031560860
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1200/jco.1994.12.5.888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082681114
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1200/jco.2005.03.3845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204218
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1200/jco.2005.03.9115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033715812
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.2307/2684482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070057846
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.2353/ajpath.2006.051152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031916133
    313 rdf:type schema:CreativeWork
    314 https://www.grid.ac/institutes/grid.120073.7 schema:alternateName Addenbrooke's Hospital
    315 schema:name Breast Cancer Functional Genomics Laboratory, Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Robinson Way, CB2 0RE, Cambridge, UK
    316 Cambridge Breast Unit, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, CB2 0QQ, Cambridge, UK
    317 rdf:type schema:Organization
    318 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
    319 schema:name Histopathology, Nottingham City Hospital NHS Trust and Department of Pathology, University of Nottingham, NG5 1PB, Nottingham, UK
    320 rdf:type schema:Organization
    321 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    322 schema:name Breast Cancer Functional Genomics Laboratory, Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Robinson Way, CB2 0RE, Cambridge, UK
    323 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...