Creating a honey bee consensus gene set View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-01

AUTHORS

Christine G Elsik, Aaron J Mackey, Justin T Reese, Natalia V Milshina, David S Roos, George M Weinstock

ABSTRACT

BACKGROUND: We wished to produce a single reference gene set for honey bee (Apis mellifera). Our motivation was twofold. First, we wished to obtain an improved set of gene models with increased coverage of known genes, while maintaining gene model quality. Second, we wished to provide a single official gene list that the research community could further utilize for consistent and comparable analyses and functional annotation. RESULTS: We created a consensus gene set for honey bee (Apis mellifera) using GLEAN, a new algorithm that uses latent class analysis to automatically combine disparate gene prediction evidence in the absence of known genes. The consensus gene models had increased representation of honey bee genes without sacrificing quality compared with any one of the input gene predictions. When compared with manually annotated gold standards, the consensus set of gene models was similar or superior in quality to each of the input sets. CONCLUSION: Most eukaryotic genome projects produce multiple gene sets because of the variety of gene prediction programs. Each of the gene prediction programs has strengths and weaknesses, and so the multiplicity of gene sets offers users a more comprehensive collection of genes to use than is available from a single program. On the other hand, the availability of multiple gene sets is also a cause for uncertainty among users as regards which set they should use. GLEAN proved to be an effective method to combine gene lists into a single reference set. More... »

PAGES

r13

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2007-8-1-r13

DOI

http://dx.doi.org/10.1186/gb-2007-8-1-r13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012922069

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17241472


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Consensus Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Insect", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Animal Science, Texas A&M University, TAMU, College Station, 77843, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elsik", 
        "givenName": "Christine G", 
        "id": "sg:person.01200357533.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200357533.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GlaxoSmithKline (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418019.5", 
          "name": [
            "Penn Genomics Institute, University of Pennsylvania, S. University Avenue, 19104, Philadelphia, Pennsylvania, USA", 
            "GlaxoSmithKline, S. Collegeville Road, 19426, Collegeville, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mackey", 
        "givenName": "Aaron J", 
        "id": "sg:person.0674526155.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674526155.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Animal Science, Texas A&M University, TAMU, College Station, 77843, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reese", 
        "givenName": "Justin T", 
        "id": "sg:person.01125620305.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125620305.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Animal Science, Texas A&M University, TAMU, College Station, 77843, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milshina", 
        "givenName": "Natalia V", 
        "id": "sg:person.012120367677.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120367677.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Penn Genomics Institute, University of Pennsylvania, S. University Avenue, 19104, Philadelphia, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roos", 
        "givenName": "David S", 
        "id": "sg:person.0711073764.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711073764.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Baylor College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.39382.33", 
          "name": [
            "Human Genome Sequencing Center, Baylor College of Medicine, Baylor Plaza, 77030, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weinstock", 
        "givenName": "George M", 
        "id": "sg:person.0663624033.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663624033.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007242262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008366117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010551629", 
          "https://doi.org/10.1186/1471-2105-6-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010551629", 
          "https://doi.org/10.1186/1471-2105-6-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.403602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012195556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5580606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017603752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-12-research0082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027626003", 
          "https://doi.org/10.1186/gb-2002-3-12-research0082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.361602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028020859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033687011", 
          "https://doi.org/10.1038/nature05260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033687011", 
          "https://doi.org/10.1038/nature05260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033687011", 
          "https://doi.org/10.1038/nature05260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.8.2444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035928070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/215585.215700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039319039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042217342", 
          "https://doi.org/10.1186/1471-2105-5-59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042217342", 
          "https://doi.org/10.1186/1471-2105-5-59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19971015)16:19<2157::aid-sim653>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046885434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051221172", 
          "https://doi.org/10.1186/1471-2105-4-50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051221172", 
          "https://doi.org/10.1186/1471-2105-4-50"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "BACKGROUND: We wished to produce a single reference gene set for honey bee (Apis mellifera). Our motivation was twofold. First, we wished to obtain an improved set of gene models with increased coverage of known genes, while maintaining gene model quality. Second, we wished to provide a single official gene list that the research community could further utilize for consistent and comparable analyses and functional annotation.\nRESULTS: We created a consensus gene set for honey bee (Apis mellifera) using GLEAN, a new algorithm that uses latent class analysis to automatically combine disparate gene prediction evidence in the absence of known genes. The consensus gene models had increased representation of honey bee genes without sacrificing quality compared with any one of the input gene predictions. When compared with manually annotated gold standards, the consensus set of gene models was similar or superior in quality to each of the input sets.\nCONCLUSION: Most eukaryotic genome projects produce multiple gene sets because of the variety of gene prediction programs. Each of the gene prediction programs has strengths and weaknesses, and so the multiplicity of gene sets offers users a more comprehensive collection of genes to use than is available from a single program. On the other hand, the availability of multiple gene sets is also a cause for uncertainty among users as regards which set they should use. GLEAN proved to be an effective method to combine gene lists into a single reference set.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2007-8-1-r13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439769", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Creating a honey bee consensus gene set", 
    "pagination": "r13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d8fb9a3dd44149c8cd53340277dd724ac6d655e0a5f9abd8cf719e4d875e6a1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17241472"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2007-8-1-r13"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012922069"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2007-8-1-r13", 
      "https://app.dimensions.ai/details/publication/pub.1012922069"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2007-8-1-r13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2007-8-1-r13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2007-8-1-r13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2007-8-1-r13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2007-8-1-r13'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      51 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2007-8-1-r13 schema:about N092fd68d81f44254aeb0eea29d27259e
2 N0af5a62566fb4844b17c2ccb38f5e8c0
3 N1c3e5914bb924351a0772d69f32d2bf0
4 Na9288bc0be794d4cabfaf7982521fb8b
5 Nc4f6f0e0b70740e4aeac258f106f5849
6 Nd4c50eaca6de4ea6845f245157883564
7 Ne6e5108310ef4fee9672f4c8f0022cfa
8 Nf9c895ea9406472aaf4087918a6ffb56
9 Nfc59bb91475d42599327e87da8b885f2
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N16b8e8db92e74f1ca1774dbf552a1287
13 schema:citation sg:pub.10.1038/nature05260
14 sg:pub.10.1186/1471-2105-4-50
15 sg:pub.10.1186/1471-2105-5-59
16 sg:pub.10.1186/1471-2105-6-31
17 sg:pub.10.1186/gb-2002-3-12-research0082
18 https://doi.org/10.1002/(sici)1097-0258(19971015)16:19<2157::aid-sim653>3.0.co;2-x
19 https://doi.org/10.1073/pnas.85.8.2444
20 https://doi.org/10.1093/bioinformatics/btg034
21 https://doi.org/10.1093/nar/gki046
22 https://doi.org/10.1101/gr.361602
23 https://doi.org/10.1101/gr.403602
24 https://doi.org/10.1101/gr.5580606
25 https://doi.org/10.1145/215585.215700
26 schema:datePublished 2007-01
27 schema:datePublishedReg 2007-01-01
28 schema:description BACKGROUND: We wished to produce a single reference gene set for honey bee (Apis mellifera). Our motivation was twofold. First, we wished to obtain an improved set of gene models with increased coverage of known genes, while maintaining gene model quality. Second, we wished to provide a single official gene list that the research community could further utilize for consistent and comparable analyses and functional annotation. RESULTS: We created a consensus gene set for honey bee (Apis mellifera) using GLEAN, a new algorithm that uses latent class analysis to automatically combine disparate gene prediction evidence in the absence of known genes. The consensus gene models had increased representation of honey bee genes without sacrificing quality compared with any one of the input gene predictions. When compared with manually annotated gold standards, the consensus set of gene models was similar or superior in quality to each of the input sets. CONCLUSION: Most eukaryotic genome projects produce multiple gene sets because of the variety of gene prediction programs. Each of the gene prediction programs has strengths and weaknesses, and so the multiplicity of gene sets offers users a more comprehensive collection of genes to use than is available from a single program. On the other hand, the availability of multiple gene sets is also a cause for uncertainty among users as regards which set they should use. GLEAN proved to be an effective method to combine gene lists into a single reference set.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N34784edf5acf45328ab5b421a9ade95a
33 N9117f5b45f324ba6aa79b7d70cb5d1af
34 sg:journal.1023439
35 schema:name Creating a honey bee consensus gene set
36 schema:pagination r13
37 schema:productId N1348dea3cc784f0d98013c51e65075f4
38 N3632d1dbbad54603a02c0e8cd7a4db39
39 N811692ff79d74880b6c6d951cb3055e7
40 N8c3988dfe570445898d6f7c1acabb3e1
41 Nbef2b298bd1d431da337dabb2b188f63
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012922069
43 https://doi.org/10.1186/gb-2007-8-1-r13
44 schema:sdDatePublished 2019-04-10T19:08
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N01857f8a97f744bf8b5960d3cfeb068e
47 schema:url http://link.springer.com/10.1186%2Fgb-2007-8-1-r13
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N01857f8a97f744bf8b5960d3cfeb068e schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N092fd68d81f44254aeb0eea29d27259e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Expressed Sequence Tags
55 rdf:type schema:DefinedTerm
56 N099a31754f794eb991ddc56f66968d7d rdf:first sg:person.012120367677.74
57 rdf:rest N17eee5f7affd4297bd704cf54c27f2d8
58 N0af5a62566fb4844b17c2ccb38f5e8c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Models, Genetic
60 rdf:type schema:DefinedTerm
61 N1348dea3cc784f0d98013c51e65075f4 schema:name doi
62 schema:value 10.1186/gb-2007-8-1-r13
63 rdf:type schema:PropertyValue
64 N16b8e8db92e74f1ca1774dbf552a1287 rdf:first sg:person.01200357533.05
65 rdf:rest N400d78fbe5d74d35accb6b98d465cc4d
66 N17eee5f7affd4297bd704cf54c27f2d8 rdf:first sg:person.0711073764.57
67 rdf:rest Nc3a26cd3d88943b6ac9e39644ce9e5c7
68 N1c3e5914bb924351a0772d69f32d2bf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Consensus Sequence
70 rdf:type schema:DefinedTerm
71 N34784edf5acf45328ab5b421a9ade95a schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N3632d1dbbad54603a02c0e8cd7a4db39 schema:name readcube_id
74 schema:value 3d8fb9a3dd44149c8cd53340277dd724ac6d655e0a5f9abd8cf719e4d875e6a1
75 rdf:type schema:PropertyValue
76 N400d78fbe5d74d35accb6b98d465cc4d rdf:first sg:person.0674526155.80
77 rdf:rest Nf712cf53baee44fd9ad2b272c2fd5514
78 N811692ff79d74880b6c6d951cb3055e7 schema:name dimensions_id
79 schema:value pub.1012922069
80 rdf:type schema:PropertyValue
81 N8c3988dfe570445898d6f7c1acabb3e1 schema:name nlm_unique_id
82 schema:value 100960660
83 rdf:type schema:PropertyValue
84 N9117f5b45f324ba6aa79b7d70cb5d1af schema:volumeNumber 8
85 rdf:type schema:PublicationVolume
86 Na9288bc0be794d4cabfaf7982521fb8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Chromosomes
88 rdf:type schema:DefinedTerm
89 Nbef2b298bd1d431da337dabb2b188f63 schema:name pubmed_id
90 schema:value 17241472
91 rdf:type schema:PropertyValue
92 Nc3a26cd3d88943b6ac9e39644ce9e5c7 rdf:first sg:person.0663624033.23
93 rdf:rest rdf:nil
94 Nc4f6f0e0b70740e4aeac258f106f5849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Animals
96 rdf:type schema:DefinedTerm
97 Nd4c50eaca6de4ea6845f245157883564 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Software
99 rdf:type schema:DefinedTerm
100 Ne6e5108310ef4fee9672f4c8f0022cfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Exons
102 rdf:type schema:DefinedTerm
103 Nf712cf53baee44fd9ad2b272c2fd5514 rdf:first sg:person.01125620305.49
104 rdf:rest N099a31754f794eb991ddc56f66968d7d
105 Nf9c895ea9406472aaf4087918a6ffb56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Genes, Insect
107 rdf:type schema:DefinedTerm
108 Nfc59bb91475d42599327e87da8b885f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Bees
110 rdf:type schema:DefinedTerm
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
115 schema:name Genetics
116 rdf:type schema:DefinedTerm
117 sg:grant.2439769 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2007-8-1-r13
118 rdf:type schema:MonetaryGrant
119 sg:journal.1023439 schema:issn 1465-6906
120 1474-760X
121 schema:name Genome Biology
122 rdf:type schema:Periodical
123 sg:person.01125620305.49 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
124 schema:familyName Reese
125 schema:givenName Justin T
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125620305.49
127 rdf:type schema:Person
128 sg:person.01200357533.05 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
129 schema:familyName Elsik
130 schema:givenName Christine G
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200357533.05
132 rdf:type schema:Person
133 sg:person.012120367677.74 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
134 schema:familyName Milshina
135 schema:givenName Natalia V
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120367677.74
137 rdf:type schema:Person
138 sg:person.0663624033.23 schema:affiliation https://www.grid.ac/institutes/grid.39382.33
139 schema:familyName Weinstock
140 schema:givenName George M
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663624033.23
142 rdf:type schema:Person
143 sg:person.0674526155.80 schema:affiliation https://www.grid.ac/institutes/grid.418019.5
144 schema:familyName Mackey
145 schema:givenName Aaron J
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674526155.80
147 rdf:type schema:Person
148 sg:person.0711073764.57 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
149 schema:familyName Roos
150 schema:givenName David S
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711073764.57
152 rdf:type schema:Person
153 sg:pub.10.1038/nature05260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033687011
154 https://doi.org/10.1038/nature05260
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/1471-2105-4-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051221172
157 https://doi.org/10.1186/1471-2105-4-50
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1471-2105-5-59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042217342
160 https://doi.org/10.1186/1471-2105-5-59
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/1471-2105-6-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010551629
163 https://doi.org/10.1186/1471-2105-6-31
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/gb-2002-3-12-research0082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027626003
166 https://doi.org/10.1186/gb-2002-3-12-research0082
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/(sici)1097-0258(19971015)16:19<2157::aid-sim653>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046885434
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.85.8.2444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035928070
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/bioinformatics/btg034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007242262
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/nar/gki046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008366117
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1101/gr.361602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028020859
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1101/gr.403602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012195556
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1101/gr.5580606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017603752
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1145/215585.215700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039319039
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
185 schema:name Penn Genomics Institute, University of Pennsylvania, S. University Avenue, 19104, Philadelphia, Pennsylvania, USA
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
188 schema:name Department of Animal Science, Texas A&M University, TAMU, College Station, 77843, Texas, USA
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.39382.33 schema:alternateName Baylor College of Medicine
191 schema:name Human Genome Sequencing Center, Baylor College of Medicine, Baylor Plaza, 77030, Houston, Texas, USA
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.418019.5 schema:alternateName GlaxoSmithKline (United States)
194 schema:name GlaxoSmithKline, S. Collegeville Road, 19426, Collegeville, Pennsylvania, USA
195 Penn Genomics Institute, University of Pennsylvania, S. University Avenue, 19104, Philadelphia, Pennsylvania, USA
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...