AceView: a comprehensive cDNA-supported gene and transcripts annotation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-08

AUTHORS

Danielle Thierry-Mieg, Jean Thierry-Mieg

ABSTRACT

BACKGROUND: Regions covering one percent of the genome, selected by ENCODE for extensive analysis, were annotated by the HAVANA/Gencode group with high quality transcripts, thus defining a benchmark. The ENCODE Genome Annotation Assessment Project (EGASP) competition aimed at reproducing Gencode and finding new genes. The organizers evaluated the protein predictions in depth. We present a complementary analysis of the mRNAs, including alternative transcript variants. RESULTS: We evaluate 25 gene tracks from the University of California Santa Cruz (UCSC) genome browser. We either distinguish or collapse the alternative splice variants, and compare the genomic coordinates of exons, introns and nucleotides. Whole mRNA models, seen as chains of introns, are sorted to find the best matching pairs, and compared so that each mRNA is used only once. At the mRNA level, AceView is by far the closest to Gencode: the vast majority of transcripts of the two methods, including alternative variants, are identical. At the protein level, however, due to a lack of experimental data, our predictions differ: Gencode annotates proteins in only 41% of the mRNAs whereas AceView does so in virtually all. We describe the driving principles of AceView, and how, by performing hand-supervised automatic annotation, we solve the combinatorial splicing problem and summarize all of GenBank, dbEST and RefSeq into a genome-wide non-redundant but comprehensive cDNA-supported transcriptome. AceView accuracy is now validated by Gencode. CONCLUSION: Relative to a consensus mRNA catalog constructed from all evidence-based annotations, Gencode and AceView have 81% and 84% sensitivity, and 74% and 73% specificity, respectively. This close agreement validates a richer view of the human transcriptome, with three to five times more transcripts than in UCSC Known Genes (sensitivity 28%), RefSeq (sensitivity 21%) or Ensembl (sensitivity 19%). More... »

PAGES

s12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2006-7-s1-s12

DOI

http://dx.doi.org/10.1186/gb-2006-7-s1-s12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050280568

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16925834


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Complementary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Introns", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleotides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
          "id": "https://www.grid.ac/institutes/grid.420086.8", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, NIH, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thierry-Mieg", 
        "givenName": "Danielle", 
        "id": "sg:person.0666340601.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666340601.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
          "id": "https://www.grid.ac/institutes/grid.420086.8", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, NIH, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thierry-Mieg", 
        "givenName": "Jean", 
        "id": "sg:person.01002567201.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002567201.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1038/sj.emboj.7601023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001779862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.emboj.7601023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001779862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/85913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002028191", 
          "https://doi.org/10.1038/85913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/85913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002028191", 
          "https://doi.org/10.1038/85913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.01701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005027838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005091941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.19.12.8505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006841201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3729105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011381905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013534924", 
          "https://doi.org/10.1038/nature03001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013534924", 
          "https://doi.org/10.1038/nature03001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015685857", 
          "https://doi.org/10.1038/ng1429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015685857", 
          "https://doi.org/10.1038/ng1429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1111443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016370374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018946050", 
          "https://doi.org/10.1038/ng1285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018946050", 
          "https://doi.org/10.1038/ng1285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0805-575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319965", 
          "https://doi.org/10.1038/nmeth0805-575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0805-575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319965", 
          "https://doi.org/10.1038/nmeth0805-575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0805-575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319965", 
          "https://doi.org/10.1038/nmeth0805-575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2384604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021287423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2005.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024789565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/embo-reports/kve085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026461752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(02)01056-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028350454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(02)01056-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028350454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1105136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031973383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4039406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033353829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m511265200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036174700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.9.11.5073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039128892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0248-4900(03)00033-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047504577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-s1-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048969371", 
          "https://doi.org/10.1186/gb-2006-7-s1-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920306776359795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069179117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083300833", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-08", 
    "datePublishedReg": "2006-08-01", 
    "description": "BACKGROUND: Regions covering one percent of the genome, selected by ENCODE for extensive analysis, were annotated by the HAVANA/Gencode group with high quality transcripts, thus defining a benchmark. The ENCODE Genome Annotation Assessment Project (EGASP) competition aimed at reproducing Gencode and finding new genes. The organizers evaluated the protein predictions in depth. We present a complementary analysis of the mRNAs, including alternative transcript variants.\nRESULTS: We evaluate 25 gene tracks from the University of California Santa Cruz (UCSC) genome browser. We either distinguish or collapse the alternative splice variants, and compare the genomic coordinates of exons, introns and nucleotides. Whole mRNA models, seen as chains of introns, are sorted to find the best matching pairs, and compared so that each mRNA is used only once. At the mRNA level, AceView is by far the closest to Gencode: the vast majority of transcripts of the two methods, including alternative variants, are identical. At the protein level, however, due to a lack of experimental data, our predictions differ: Gencode annotates proteins in only 41% of the mRNAs whereas AceView does so in virtually all. We describe the driving principles of AceView, and how, by performing hand-supervised automatic annotation, we solve the combinatorial splicing problem and summarize all of GenBank, dbEST and RefSeq into a genome-wide non-redundant but comprehensive cDNA-supported transcriptome. AceView accuracy is now validated by Gencode.\nCONCLUSION: Relative to a consensus mRNA catalog constructed from all evidence-based annotations, Gencode and AceView have 81% and 84% sensitivity, and 74% and 73% specificity, respectively. This close agreement validates a richer view of the human transcriptome, with three to five times more transcripts than in UCSC Known Genes (sensitivity 28%), RefSeq (sensitivity 21%) or Ensembl (sensitivity 19%).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2006-7-s1-s12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "AceView: a comprehensive cDNA-supported gene and transcripts annotation", 
    "pagination": "s12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef85b30e3fd958bdc092d6aa2e72800bb59cfcae9a253a066f00f5fcf249a981"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16925834"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2006-7-s1-s12"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050280568"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2006-7-s1-s12", 
      "https://app.dimensions.ai/details/publication/pub.1050280568"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2006-7-s1-s12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-s1-s12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-s1-s12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-s1-s12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-s1-s12'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      66 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2006-7-s1-s12 schema:about N06452d9052734fb2ab8cee223087e822
2 N076041349eae4eceac72ef76bafd8919
3 N183ad69698b44d368b0f46c06db75ac8
4 N2b700d25f3c540fba3607b9aa047c0b7
5 N39d6b7a9f8e345cab38633ab410ec38c
6 N4751d1a0837942788bbf358a55f2465c
7 N6019b0d176b84d46a66f539ff029a457
8 N63a98bf90a1b414db96aacbfa4c5ef89
9 N85932d5338b3483582c48a812104a8fd
10 N93ce6cc4aec04f29b3192c6782ec821e
11 N9e9853da0b3143d384eb556e1af80ae1
12 Nd9b7832aef55497cb2a5cf0b28e617a0
13 Ne085f823e7be42b3a1ec3887c4524315
14 Nee141f4b9181464a8efbc514c60f5723
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author N3e3e32bb0aca422aa614d750b195b1ab
18 schema:citation sg:pub.10.1038/85913
19 sg:pub.10.1038/nature03001
20 sg:pub.10.1038/ng1285
21 sg:pub.10.1038/ng1429
22 sg:pub.10.1038/nmeth0805-575
23 sg:pub.10.1186/gb-2006-7-s1-s2
24 https://app.dimensions.ai/details/publication/pub.1083300833
25 https://doi.org/10.1016/j.tig.2005.01.007
26 https://doi.org/10.1016/s0248-4900(03)00033-9
27 https://doi.org/10.1016/s0378-1119(02)01056-9
28 https://doi.org/10.1038/sj.emboj.7601023
29 https://doi.org/10.1074/jbc.m511265200
30 https://doi.org/10.1093/embo-reports/kve085
31 https://doi.org/10.1093/nar/gkj144
32 https://doi.org/10.1101/gr.2384604
33 https://doi.org/10.1101/gr.3729105
34 https://doi.org/10.1101/gr.4039406
35 https://doi.org/10.1126/science.1105136
36 https://doi.org/10.1126/science.1111443
37 https://doi.org/10.1128/mcb.19.12.8505
38 https://doi.org/10.1128/mcb.9.11.5073
39 https://doi.org/10.1242/jcs.01701
40 https://doi.org/10.2174/138920306776359795
41 schema:datePublished 2006-08
42 schema:datePublishedReg 2006-08-01
43 schema:description BACKGROUND: Regions covering one percent of the genome, selected by ENCODE for extensive analysis, were annotated by the HAVANA/Gencode group with high quality transcripts, thus defining a benchmark. The ENCODE Genome Annotation Assessment Project (EGASP) competition aimed at reproducing Gencode and finding new genes. The organizers evaluated the protein predictions in depth. We present a complementary analysis of the mRNAs, including alternative transcript variants. RESULTS: We evaluate 25 gene tracks from the University of California Santa Cruz (UCSC) genome browser. We either distinguish or collapse the alternative splice variants, and compare the genomic coordinates of exons, introns and nucleotides. Whole mRNA models, seen as chains of introns, are sorted to find the best matching pairs, and compared so that each mRNA is used only once. At the mRNA level, AceView is by far the closest to Gencode: the vast majority of transcripts of the two methods, including alternative variants, are identical. At the protein level, however, due to a lack of experimental data, our predictions differ: Gencode annotates proteins in only 41% of the mRNAs whereas AceView does so in virtually all. We describe the driving principles of AceView, and how, by performing hand-supervised automatic annotation, we solve the combinatorial splicing problem and summarize all of GenBank, dbEST and RefSeq into a genome-wide non-redundant but comprehensive cDNA-supported transcriptome. AceView accuracy is now validated by Gencode. CONCLUSION: Relative to a consensus mRNA catalog constructed from all evidence-based annotations, Gencode and AceView have 81% and 84% sensitivity, and 74% and 73% specificity, respectively. This close agreement validates a richer view of the human transcriptome, with three to five times more transcripts than in UCSC Known Genes (sensitivity 28%), RefSeq (sensitivity 21%) or Ensembl (sensitivity 19%).
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N3cc9f2b2c9ff416c96b8f17f8969b84e
48 Ne8cf2b109cf643d481b6cf477a223e83
49 sg:journal.1023439
50 schema:name AceView: a comprehensive cDNA-supported gene and transcripts annotation
51 schema:pagination s12
52 schema:productId N29551889c95742859045fe745378b7bd
53 N42a250212c774471b38a15649ee31d64
54 N49c984f3b0e946e0ad60d54ea51655fa
55 Na8ce706c19e34008be54454d8c9a6984
56 Nc4c9f638e07643c29676858dab884c4f
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050280568
58 https://doi.org/10.1186/gb-2006-7-s1-s12
59 schema:sdDatePublished 2019-04-11T00:17
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N4beadfb0ffaf497699a980aa29c2b36d
62 schema:url http://link.springer.com/10.1186%2Fgb-2006-7-s1-s12
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N06452d9052734fb2ab8cee223087e822 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Exons
68 rdf:type schema:DefinedTerm
69 N076041349eae4eceac72ef76bafd8919 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name RNA, Messenger
71 rdf:type schema:DefinedTerm
72 N183ad69698b44d368b0f46c06db75ac8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Software
74 rdf:type schema:DefinedTerm
75 N29551889c95742859045fe745378b7bd schema:name nlm_unique_id
76 schema:value 100960660
77 rdf:type schema:PropertyValue
78 N2b700d25f3c540fba3607b9aa047c0b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Computational Biology
80 rdf:type schema:DefinedTerm
81 N39d6b7a9f8e345cab38633ab410ec38c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Sequence Analysis, Protein
83 rdf:type schema:DefinedTerm
84 N3cc9f2b2c9ff416c96b8f17f8969b84e schema:issueNumber Suppl 1
85 rdf:type schema:PublicationIssue
86 N3e3e32bb0aca422aa614d750b195b1ab rdf:first sg:person.0666340601.58
87 rdf:rest Nfcae45e61dbf473e8cf8a6bbe22c29f2
88 N42a250212c774471b38a15649ee31d64 schema:name readcube_id
89 schema:value ef85b30e3fd958bdc092d6aa2e72800bb59cfcae9a253a066f00f5fcf249a981
90 rdf:type schema:PropertyValue
91 N4751d1a0837942788bbf358a55f2465c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Models, Genetic
93 rdf:type schema:DefinedTerm
94 N49c984f3b0e946e0ad60d54ea51655fa schema:name pubmed_id
95 schema:value 16925834
96 rdf:type schema:PropertyValue
97 N4beadfb0ffaf497699a980aa29c2b36d schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N6019b0d176b84d46a66f539ff029a457 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Genomics
101 rdf:type schema:DefinedTerm
102 N63a98bf90a1b414db96aacbfa4c5ef89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Genes
104 rdf:type schema:DefinedTerm
105 N85932d5338b3483582c48a812104a8fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Sequence Analysis, RNA
107 rdf:type schema:DefinedTerm
108 N93ce6cc4aec04f29b3192c6782ec821e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Introns
110 rdf:type schema:DefinedTerm
111 N9e9853da0b3143d384eb556e1af80ae1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Nucleotides
113 rdf:type schema:DefinedTerm
114 Na8ce706c19e34008be54454d8c9a6984 schema:name dimensions_id
115 schema:value pub.1050280568
116 rdf:type schema:PropertyValue
117 Nc4c9f638e07643c29676858dab884c4f schema:name doi
118 schema:value 10.1186/gb-2006-7-s1-s12
119 rdf:type schema:PropertyValue
120 Nd9b7832aef55497cb2a5cf0b28e617a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 Ne085f823e7be42b3a1ec3887c4524315 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Sequence Analysis, DNA
125 rdf:type schema:DefinedTerm
126 Ne8cf2b109cf643d481b6cf477a223e83 schema:volumeNumber 7
127 rdf:type schema:PublicationVolume
128 Nee141f4b9181464a8efbc514c60f5723 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name DNA, Complementary
130 rdf:type schema:DefinedTerm
131 Nfcae45e61dbf473e8cf8a6bbe22c29f2 rdf:first sg:person.01002567201.20
132 rdf:rest rdf:nil
133 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
134 schema:name Biological Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
137 schema:name Genetics
138 rdf:type schema:DefinedTerm
139 sg:journal.1023439 schema:issn 1465-6906
140 1474-760X
141 schema:name Genome Biology
142 rdf:type schema:Periodical
143 sg:person.01002567201.20 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
144 schema:familyName Thierry-Mieg
145 schema:givenName Jean
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002567201.20
147 rdf:type schema:Person
148 sg:person.0666340601.58 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
149 schema:familyName Thierry-Mieg
150 schema:givenName Danielle
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666340601.58
152 rdf:type schema:Person
153 sg:pub.10.1038/85913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002028191
154 https://doi.org/10.1038/85913
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature03001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013534924
157 https://doi.org/10.1038/nature03001
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ng1285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018946050
160 https://doi.org/10.1038/ng1285
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/ng1429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015685857
163 https://doi.org/10.1038/ng1429
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth0805-575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319965
166 https://doi.org/10.1038/nmeth0805-575
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/gb-2006-7-s1-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048969371
169 https://doi.org/10.1186/gb-2006-7-s1-s2
170 rdf:type schema:CreativeWork
171 https://app.dimensions.ai/details/publication/pub.1083300833 schema:CreativeWork
172 https://doi.org/10.1016/j.tig.2005.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024789565
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0248-4900(03)00033-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047504577
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0378-1119(02)01056-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028350454
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1038/sj.emboj.7601023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001779862
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1074/jbc.m511265200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036174700
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/embo-reports/kve085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026461752
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/nar/gkj144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005091941
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1101/gr.2384604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021287423
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1101/gr.3729105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011381905
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1101/gr.4039406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033353829
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.1105136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031973383
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1111443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016370374
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1128/mcb.19.12.8505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006841201
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1128/mcb.9.11.5073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039128892
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1242/jcs.01701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005027838
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2174/138920306776359795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069179117
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.420086.8 schema:alternateName National Institute of Arthritis and Musculoskeletal and Skin Diseases
205 schema:name National Center for Biotechnology Information, National Library of Medicine, NIH, 20894, Bethesda, MD, USA
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...