Design principles of molecular networks revealed by global comparisons and composite motifs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-03

AUTHORS

Haiyuan Yu, Yu Xia, Valery Trifonov, Mark Gerstein

ABSTRACT

BACKGROUND: Molecular networks are of current interest, particularly with the publication of many large-scale datasets. Previous analyses have focused on topologic structures of individual networks. RESULTS: Here, we present a global comparison of four basic molecular networks: regulatory, co-expression, interaction, and metabolic. In terms of overall topologic correlation--whether nearby proteins in one network are close in another--we find that the four are quite similar. However, focusing on the occurrence of local features, we introduce the concept of composite hubs, namely hubs shared by more than one network. We find that the three 'action' networks (metabolic, co-expression, and interaction) share the same scaffolding of hubs, whereas the regulatory network uses distinctly different regulator hubs. Finally, we examine the inter-relationship between the regulatory network and the three action networks, focusing on three composite motifs--triangles, trusses, and bridges--involving different degrees of regulation of gene pairs. Our analysis shows that interaction and co-expression networks have short-range relationships, with directly interacting and co-expressed proteins sharing regulators. However, the metabolic network contains many long-distance relationships: far-away enzymes in a pathway often have time-delayed expression relationships, which are well coordinated by bridges connecting their regulators. CONCLUSION: We demonstrate how basic molecular networks are distinct yet connected and well coordinated. Many of our conclusions can be mapped onto structured social networks, providing intuitive comparisons. In particular, the long-distance regulation in metabolic networks agrees with its counterpart in social networks (namely, assembly lines). Conversely, the segregation of regulator hubs from other hubs diverges from social intuitions (as managers often are centers of interactions). More... »

PAGES

r55

References to SciGraph publications

  • 2004-05. Just-in-time transcription program in metabolic pathways in NATURE GENETICS
  • 2005-08. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiaeinteraction network in BMC BIOLOGY
  • 2002-01. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry in NATURE
  • 2002-01. Functional organization of the yeast proteome by systematic analysis of protein complexes in NATURE
  • 2002-05. Topological and causal structure of the yeast transcriptional regulatory network in NATURE GENETICS
  • 2001-12. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae in NATURE GENETICS
  • 2004-09. Genomic analysis of regulatory network dynamics reveals large topological changes in NATURE
  • 2005-04. An evolutionary and functional assessment of regulatory network motifs in GENOME BIOLOGY
  • 1999-12. From molecular to modular cell biology in NATURE
  • 2002-05. Network motifs in the transcriptional regulation network of Escherichia coli in NATURE GENETICS
  • 2001-05. Lethality and centrality in protein networks in NATURE
  • 2000-02. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae in NATURE
  • 2001-01. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF in NATURE
  • 2004-01. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae in NATURE BIOTECHNOLOGY
  • 2002-05. Comparative assessment of large-scale data sets of protein–protein interactions in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/gb-2006-7-7-r55

    DOI

    http://dx.doi.org/10.1186/gb-2006-7-7-r55

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038443687

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16859507


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1608", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Sociology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Studies in Human Society", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Motifs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Molecular Biophysics and Biochemistry, Whitney Avenue, Yale University, 06520, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Haiyuan", 
            "id": "sg:person.01175532711.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175532711.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Molecular Biophysics and Biochemistry, Whitney Avenue, Yale University, 06520, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xia", 
            "givenName": "Yu", 
            "id": "sg:person.01066015375.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066015375.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Molecular Biophysics and Biochemistry, Whitney Avenue, Yale University, 06520, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trifonov", 
            "givenName": "Valery", 
            "id": "sg:person.01234173117.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234173117.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Molecular Biophysics and Biochemistry, Whitney Avenue, Yale University, 06520, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerstein", 
            "givenName": "Mark", 
            "id": "sg:person.011677655217.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677655217.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/nar/gkg278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000614567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.1.281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000644225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415141a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001484556", 
              "https://doi.org/10.1038/415141a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415141a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001484556", 
              "https://doi.org/10.1038/415141a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1075090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001953109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2004.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003343687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1097-2765(02)00531-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004731195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415180a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005267371", 
              "https://doi.org/10.1038/415180a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415180a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005267371", 
              "https://doi.org/10.1038/415180a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/jbiol23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006522554", 
              "https://doi.org/10.1186/jbiol23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/30.1.31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009221125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.97.3.1143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009581960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009644940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.17.3513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010739048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(03)00175-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010744024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(03)00175-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010744024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010954918", 
              "https://doi.org/10.1038/ng881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010954918", 
              "https://doi.org/10.1038/ng881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.5219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010959258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014032790", 
              "https://doi.org/10.1038/ng1348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014032790", 
              "https://doi.org/10.1038/ng1348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014179427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2005-6-4-r35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014370761", 
              "https://doi.org/10.1186/gb-2005-6-4-r35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/30.1.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014503362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1091/mbc.9.12.3273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014767256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0306752101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016645938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1097-2765(03)00033-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017151107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017271040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/27.1.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017605455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017837373", 
              "https://doi.org/10.1038/nature750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017837373", 
              "https://doi.org/10.1038/nature750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.122653799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35011540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019498862", 
              "https://doi.org/10.1038/35011540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35011540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019498862", 
              "https://doi.org/10.1038/35011540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.205602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019936989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0500365102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022638320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.2133841100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023151304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024019002", 
              "https://doi.org/10.1038/ng776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024019002", 
              "https://doi.org/10.1038/ng776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1097-2765(00)80114-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027451892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.1039602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031843616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0307571101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032119241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.200327197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032772464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.89.15.6746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032938559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.272.27.17045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033098570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.298.5594.824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033238539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033803529", 
              "https://doi.org/10.1038/nature02782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033803529", 
              "https://doi.org/10.1038/nature02782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033849439", 
              "https://doi.org/10.1038/nbt918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033849439", 
              "https://doi.org/10.1038/nbt918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35001009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035773549", 
              "https://doi.org/10.1038/35001009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35001009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035773549", 
              "https://doi.org/10.1038/35001009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35054095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037596378", 
              "https://doi.org/10.1038/35054095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35054095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037596378", 
              "https://doi.org/10.1038/35054095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/ec.01.1.22-32.2002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037951076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2004.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038049018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35075138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038990326", 
              "https://doi.org/10.1038/35075138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35075138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038990326", 
              "https://doi.org/10.1038/35075138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.15.2.997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045212944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046040073", 
              "https://doi.org/10.1038/ng873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046040073", 
              "https://doi.org/10.1038/ng873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.15.3.1220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047443897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1087361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048921070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050273151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00087a010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055160326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1068696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062445845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074980055", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1995.tb00162.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082425651"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-03", 
        "datePublishedReg": "2006-03-01", 
        "description": "BACKGROUND: Molecular networks are of current interest, particularly with the publication of many large-scale datasets. Previous analyses have focused on topologic structures of individual networks.\nRESULTS: Here, we present a global comparison of four basic molecular networks: regulatory, co-expression, interaction, and metabolic. In terms of overall topologic correlation--whether nearby proteins in one network are close in another--we find that the four are quite similar. However, focusing on the occurrence of local features, we introduce the concept of composite hubs, namely hubs shared by more than one network. We find that the three 'action' networks (metabolic, co-expression, and interaction) share the same scaffolding of hubs, whereas the regulatory network uses distinctly different regulator hubs. Finally, we examine the inter-relationship between the regulatory network and the three action networks, focusing on three composite motifs--triangles, trusses, and bridges--involving different degrees of regulation of gene pairs. Our analysis shows that interaction and co-expression networks have short-range relationships, with directly interacting and co-expressed proteins sharing regulators. However, the metabolic network contains many long-distance relationships: far-away enzymes in a pathway often have time-delayed expression relationships, which are well coordinated by bridges connecting their regulators.\nCONCLUSION: We demonstrate how basic molecular networks are distinct yet connected and well coordinated. Many of our conclusions can be mapped onto structured social networks, providing intuitive comparisons. In particular, the long-distance regulation in metabolic networks agrees with its counterpart in social networks (namely, assembly lines). Conversely, the segregation of regulator hubs from other hubs diverges from social intuitions (as managers often are centers of interactions).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/gb-2006-7-7-r55", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2440511", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Design principles of molecular networks revealed by global comparisons and composite motifs", 
        "pagination": "r55", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b720e7021ce68ffe96cfe080d902c9b058e51d018e274bed17e766b5c6d94b81"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16859507"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100960660"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/gb-2006-7-7-r55"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038443687"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/gb-2006-7-7-r55", 
          "https://app.dimensions.ai/details/publication/pub.1038443687"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fgb-2006-7-7-r55"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-7-r55'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-7-r55'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-7-r55'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-7-r55'


     

    This table displays all metadata directly associated to this object as RDF triples.

    283 TRIPLES      21 PREDICATES      87 URIs      24 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/gb-2006-7-7-r55 schema:about N8bf60d1061274f0382135d1e7b594ed9
    2 Na07fbf2fc8854be4ae9ce434149efde0
    3 Nf87c1097b995481d836701f41e800af7
    4 anzsrc-for:16
    5 anzsrc-for:1608
    6 schema:author N8c868f9800164c9e9c7b61f5d077c4ec
    7 schema:citation sg:pub.10.1038/35001009
    8 sg:pub.10.1038/35011540
    9 sg:pub.10.1038/35054095
    10 sg:pub.10.1038/35075138
    11 sg:pub.10.1038/415141a
    12 sg:pub.10.1038/415180a
    13 sg:pub.10.1038/nature02782
    14 sg:pub.10.1038/nature750
    15 sg:pub.10.1038/nbt918
    16 sg:pub.10.1038/ng1348
    17 sg:pub.10.1038/ng776
    18 sg:pub.10.1038/ng873
    19 sg:pub.10.1038/ng881
    20 sg:pub.10.1186/gb-2005-6-4-r35
    21 sg:pub.10.1186/jbiol23
    22 https://app.dimensions.ai/details/publication/pub.1074980055
    23 https://doi.org/10.1002/j.1460-2075.1995.tb00162.x
    24 https://doi.org/10.1006/jmbi.2000.5219
    25 https://doi.org/10.1016/j.cell.2004.05.010
    26 https://doi.org/10.1016/j.tig.2004.04.008
    27 https://doi.org/10.1016/s0168-9525(03)00175-6
    28 https://doi.org/10.1016/s1097-2765(00)80114-8
    29 https://doi.org/10.1016/s1097-2765(02)00531-2
    30 https://doi.org/10.1016/s1097-2765(03)00033-9
    31 https://doi.org/10.1021/bi00087a010
    32 https://doi.org/10.1073/pnas.0306752101
    33 https://doi.org/10.1073/pnas.0307571101
    34 https://doi.org/10.1073/pnas.0500365102
    35 https://doi.org/10.1073/pnas.122653799
    36 https://doi.org/10.1073/pnas.200327197
    37 https://doi.org/10.1073/pnas.2133841100
    38 https://doi.org/10.1073/pnas.89.15.6746
    39 https://doi.org/10.1073/pnas.97.3.1143
    40 https://doi.org/10.1074/jbc.272.27.17045
    41 https://doi.org/10.1091/mbc.9.12.3273
    42 https://doi.org/10.1093/nar/27.1.69
    43 https://doi.org/10.1093/nar/29.1.281
    44 https://doi.org/10.1093/nar/29.17.3513
    45 https://doi.org/10.1093/nar/30.1.303
    46 https://doi.org/10.1093/nar/30.1.31
    47 https://doi.org/10.1093/nar/gkg056
    48 https://doi.org/10.1093/nar/gkg278
    49 https://doi.org/10.1093/nar/gkh063
    50 https://doi.org/10.1093/nar/gkh164
    51 https://doi.org/10.1101/gad.1039602
    52 https://doi.org/10.1101/gr.205602
    53 https://doi.org/10.1103/revmodphys.74.47
    54 https://doi.org/10.1126/science.1065810
    55 https://doi.org/10.1126/science.1068696
    56 https://doi.org/10.1126/science.1075090
    57 https://doi.org/10.1126/science.1087361
    58 https://doi.org/10.1126/science.298.5594.824
    59 https://doi.org/10.1128/ec.01.1.22-32.2002
    60 https://doi.org/10.1128/mcb.15.2.997
    61 https://doi.org/10.1128/mcb.15.3.1220
    62 schema:datePublished 2006-03
    63 schema:datePublishedReg 2006-03-01
    64 schema:description BACKGROUND: Molecular networks are of current interest, particularly with the publication of many large-scale datasets. Previous analyses have focused on topologic structures of individual networks. RESULTS: Here, we present a global comparison of four basic molecular networks: regulatory, co-expression, interaction, and metabolic. In terms of overall topologic correlation--whether nearby proteins in one network are close in another--we find that the four are quite similar. However, focusing on the occurrence of local features, we introduce the concept of composite hubs, namely hubs shared by more than one network. We find that the three 'action' networks (metabolic, co-expression, and interaction) share the same scaffolding of hubs, whereas the regulatory network uses distinctly different regulator hubs. Finally, we examine the inter-relationship between the regulatory network and the three action networks, focusing on three composite motifs--triangles, trusses, and bridges--involving different degrees of regulation of gene pairs. Our analysis shows that interaction and co-expression networks have short-range relationships, with directly interacting and co-expressed proteins sharing regulators. However, the metabolic network contains many long-distance relationships: far-away enzymes in a pathway often have time-delayed expression relationships, which are well coordinated by bridges connecting their regulators. CONCLUSION: We demonstrate how basic molecular networks are distinct yet connected and well coordinated. Many of our conclusions can be mapped onto structured social networks, providing intuitive comparisons. In particular, the long-distance regulation in metabolic networks agrees with its counterpart in social networks (namely, assembly lines). Conversely, the segregation of regulator hubs from other hubs diverges from social intuitions (as managers often are centers of interactions).
    65 schema:genre research_article
    66 schema:inLanguage en
    67 schema:isAccessibleForFree true
    68 schema:isPartOf N0a356713b3504c7fbe545bb60b72e8ae
    69 N6df17d2b138548d6ac2953fb16ec0a61
    70 sg:journal.1023439
    71 schema:name Design principles of molecular networks revealed by global comparisons and composite motifs
    72 schema:pagination r55
    73 schema:productId N0c21e0cf85a84b0785de4c84911155d9
    74 N297116a2849a420899db63650683b8eb
    75 N414b6ebd2e1843d1be8e30f4e542015e
    76 N5653a3227d2a454b87f966a70e3840e5
    77 N69122fa44076434fbd08dc046d597f2d
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038443687
    79 https://doi.org/10.1186/gb-2006-7-7-r55
    80 schema:sdDatePublished 2019-04-10T16:43
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher N628827ac69184f3da1273bffed8fc35b
    83 schema:url http://link.springer.com/10.1186%2Fgb-2006-7-7-r55
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N0a356713b3504c7fbe545bb60b72e8ae schema:volumeNumber 7
    88 rdf:type schema:PublicationVolume
    89 N0c21e0cf85a84b0785de4c84911155d9 schema:name doi
    90 schema:value 10.1186/gb-2006-7-7-r55
    91 rdf:type schema:PropertyValue
    92 N1101cca62c33477fa40b4147087aa882 rdf:first sg:person.01066015375.06
    93 rdf:rest N647891ff5f0145a89d492af0255ba085
    94 N297116a2849a420899db63650683b8eb schema:name readcube_id
    95 schema:value b720e7021ce68ffe96cfe080d902c9b058e51d018e274bed17e766b5c6d94b81
    96 rdf:type schema:PropertyValue
    97 N414b6ebd2e1843d1be8e30f4e542015e schema:name nlm_unique_id
    98 schema:value 100960660
    99 rdf:type schema:PropertyValue
    100 N5653a3227d2a454b87f966a70e3840e5 schema:name dimensions_id
    101 schema:value pub.1038443687
    102 rdf:type schema:PropertyValue
    103 N628827ac69184f3da1273bffed8fc35b schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 N647891ff5f0145a89d492af0255ba085 rdf:first sg:person.01234173117.20
    106 rdf:rest Nc2e61d1777d94639a180a1eb5a4d2022
    107 N69122fa44076434fbd08dc046d597f2d schema:name pubmed_id
    108 schema:value 16859507
    109 rdf:type schema:PropertyValue
    110 N6df17d2b138548d6ac2953fb16ec0a61 schema:issueNumber 7
    111 rdf:type schema:PublicationIssue
    112 N8bf60d1061274f0382135d1e7b594ed9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Amino Acid Motifs
    114 rdf:type schema:DefinedTerm
    115 N8c868f9800164c9e9c7b61f5d077c4ec rdf:first sg:person.01175532711.05
    116 rdf:rest N1101cca62c33477fa40b4147087aa882
    117 Na07fbf2fc8854be4ae9ce434149efde0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Protein Conformation
    119 rdf:type schema:DefinedTerm
    120 Nc2e61d1777d94639a180a1eb5a4d2022 rdf:first sg:person.011677655217.83
    121 rdf:rest rdf:nil
    122 Nf87c1097b995481d836701f41e800af7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Proteins
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Studies in Human Society
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:1608 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Sociology
    130 rdf:type schema:DefinedTerm
    131 sg:grant.2440511 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2006-7-7-r55
    132 rdf:type schema:MonetaryGrant
    133 sg:journal.1023439 schema:issn 1465-6906
    134 1474-760X
    135 schema:name Genome Biology
    136 rdf:type schema:Periodical
    137 sg:person.01066015375.06 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    138 schema:familyName Xia
    139 schema:givenName Yu
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066015375.06
    141 rdf:type schema:Person
    142 sg:person.011677655217.83 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    143 schema:familyName Gerstein
    144 schema:givenName Mark
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677655217.83
    146 rdf:type schema:Person
    147 sg:person.01175532711.05 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    148 schema:familyName Yu
    149 schema:givenName Haiyuan
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175532711.05
    151 rdf:type schema:Person
    152 sg:person.01234173117.20 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    153 schema:familyName Trifonov
    154 schema:givenName Valery
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234173117.20
    156 rdf:type schema:Person
    157 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
    158 https://doi.org/10.1038/35001009
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/35011540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019498862
    161 https://doi.org/10.1038/35011540
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/35054095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037596378
    164 https://doi.org/10.1038/35054095
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/35075138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038990326
    167 https://doi.org/10.1038/35075138
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/415141a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484556
    170 https://doi.org/10.1038/415141a
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/415180a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005267371
    173 https://doi.org/10.1038/415180a
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nature02782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033803529
    176 https://doi.org/10.1038/nature02782
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nature750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017837373
    179 https://doi.org/10.1038/nature750
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nbt918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033849439
    182 https://doi.org/10.1038/nbt918
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/ng1348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014032790
    185 https://doi.org/10.1038/ng1348
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/ng776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024019002
    188 https://doi.org/10.1038/ng776
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/ng873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046040073
    191 https://doi.org/10.1038/ng873
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
    194 https://doi.org/10.1038/ng881
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/gb-2005-6-4-r35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014370761
    197 https://doi.org/10.1186/gb-2005-6-4-r35
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/jbiol23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006522554
    200 https://doi.org/10.1186/jbiol23
    201 rdf:type schema:CreativeWork
    202 https://app.dimensions.ai/details/publication/pub.1074980055 schema:CreativeWork
    203 https://doi.org/10.1002/j.1460-2075.1995.tb00162.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1082425651
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1006/jmbi.2000.5219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010959258
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.cell.2004.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003343687
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.tig.2004.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038049018
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/s0168-9525(03)00175-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010744024
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/s1097-2765(00)80114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027451892
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/s1097-2765(02)00531-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004731195
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/s1097-2765(03)00033-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017151107
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1021/bi00087a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055160326
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1073/pnas.0306752101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016645938
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1073/pnas.0307571101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032119241
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1073/pnas.0500365102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022638320
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1073/pnas.200327197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032772464
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1073/pnas.2133841100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023151304
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1073/pnas.89.15.6746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032938559
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1073/pnas.97.3.1143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009581960
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1074/jbc.272.27.17045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033098570
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1091/mbc.9.12.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014767256
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/nar/27.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017605455
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/nar/29.1.281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000644225
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1093/nar/29.17.3513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010739048
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1093/nar/30.1.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014503362
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1093/nar/30.1.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009221125
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1093/nar/gkg056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009644940
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1093/nar/gkg278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000614567
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1093/nar/gkh063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017271040
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1093/nar/gkh164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014179427
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1101/gad.1039602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031843616
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1101/gr.205602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019936989
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1126/science.1065810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050273151
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1126/science.1068696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445845
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1126/science.1087361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048921070
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1126/science.298.5594.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238539
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1128/ec.01.1.22-32.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037951076
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1128/mcb.15.2.997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045212944
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1128/mcb.15.3.1220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047443897
    280 rdf:type schema:CreativeWork
    281 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    282 schema:name Department of Molecular Biophysics and Biochemistry, Whitney Avenue, Yale University, 06520, New Haven, CT, USA
    283 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...