Comparative analysis of Saccharomyces cerevisiaeWW domains and their interacting proteins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-04-10

AUTHORS

Jay R Hesselberth, John P Miller, Anna Golob, Jason E Stajich, Gregory A Michaud, Stanley Fields

ABSTRACT

BackgroundThe WW domain is found in a large number of eukaryotic proteins implicated in a variety of cellular processes. WW domains bind proline-rich protein and peptide ligands, but the protein interaction partners of many WW domain-containing proteins in Saccharomyces cerevisiae are largely unknown.ResultsWe used protein microarray technology to generate a protein interaction map for 12 of the 13 WW domains present in proteins of the yeast S. cerevisiae. We observed 587 interactions between these 12 domains and 207 proteins, most of which have not previously been described. We analyzed the representation of functional annotations within the network, identifying enrichments for proteins with peroxisomal localization, as well as for proteins involved in protein turnover and cofactor biosynthesis. We compared orthologs of the interacting proteins to identify conserved motifs known to mediate WW domain interactions, and found substantial evidence for the structural conservation of such binding motifs throughout the yeast lineages. The comparative approach also revealed that several of the WW domain-containing proteins themselves have evolutionarily conserved WW domain binding sites, suggesting a functional role for inter- or intramolecular association between proteins that harbor WW domains. On the basis of these results, we propose a model for the tuning of interactions between WW domains and their protein interaction partners.ConclusionProtein microarrays provide an appealing alternative to existing techniques for the construction of protein interaction networks. Here we built a network composed of WW domain-protein interactions that illuminates novel features of WW domain-containing proteins and their protein interaction partners. More... »

PAGES

r30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2006-7-4-r30

DOI

http://dx.doi.org/10.1186/gb-2006-7-4-r30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009417870

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16606443


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ligands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Array Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Yeasts", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Genome Sciences, University of Washington, Box 357730, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Box 357730, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hesselberth", 
        "givenName": "Jay R", 
        "id": "sg:person.0610370442.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610370442.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Buck Institute, Redwood Boulevard, 94945, Novato, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.272799.0", 
          "name": [
            "Department of Genome Sciences, University of Washington, Box 357730, 98195, Seattle, WA, USA", 
            "Buck Institute, Redwood Boulevard, 94945, Novato, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "John P", 
        "id": "sg:person.016143442054.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143442054.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genome Sciences, University of Washington, Box 357730, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Box 357730, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golob", 
        "givenName": "Anna", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Genetics and Microbiology, Duke University, 27710, Durham, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Department of Molecular Genetics and Microbiology, Duke University, 27710, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stajich", 
        "givenName": "Jason E", 
        "id": "sg:person.01031401420.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031401420.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Invitrogen, East Main Street, 06405, Branford, CT, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Invitrogen, East Main Street, 06405, Branford, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michaud", 
        "givenName": "Gregory A", 
        "id": "sg:person.01027032460.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027032460.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, and Howard Hughes Medical Institute, University of Washington, Box 357730, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Box 357730, 98195, Seattle, WA, USA", 
            "Department of Medicine, and Howard Hughes Medical Institute, University of Washington, Box 357730, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fields", 
        "givenName": "Stanley", 
        "id": "sg:person.014624417057.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624417057.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015857765", 
          "https://doi.org/10.1038/nature02062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00232001079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001718267", 
          "https://doi.org/10.1007/s00232001079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415180a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005267371", 
          "https://doi.org/10.1038/415180a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415141a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001484556", 
          "https://doi.org/10.1038/415141a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1207436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004144374", 
          "https://doi.org/10.1038/sj.onc.1207436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/87562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042273938", 
          "https://doi.org/10.1038/87562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/72378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009863341", 
          "https://doi.org/10.1038/72378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773549", 
          "https://doi.org/10.1038/35001009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/jbiol23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006522554", 
          "https://doi.org/10.1186/jbiol23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008146481", 
          "https://doi.org/10.1038/nbt1116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04-10", 
    "datePublishedReg": "2006-04-10", 
    "description": "BackgroundThe WW domain is found in a large number of eukaryotic proteins implicated in a variety of cellular processes. WW domains bind proline-rich protein and peptide ligands, but the protein interaction partners of many WW domain-containing proteins in Saccharomyces cerevisiae are largely unknown.ResultsWe used protein microarray technology to generate a protein interaction map for 12 of the 13 WW domains present in proteins of the yeast S. cerevisiae. We observed 587 interactions between these 12 domains and 207 proteins, most of which have not previously been described. We analyzed the representation of functional annotations within the network, identifying enrichments for proteins with peroxisomal localization, as well as for proteins involved in protein turnover and cofactor biosynthesis. We compared orthologs of the interacting proteins to identify conserved motifs known to mediate WW domain interactions, and found substantial evidence for the structural conservation of such binding motifs throughout the yeast lineages. The comparative approach also revealed that several of the WW domain-containing proteins themselves have evolutionarily conserved WW domain binding sites, suggesting a functional role for inter- or intramolecular association between proteins that harbor WW domains. On the basis of these results, we propose a model for the tuning of interactions between WW domains and their protein interaction partners.ConclusionProtein microarrays provide an appealing alternative to existing techniques for the construction of protein interaction networks. Here we built a network composed of WW domain-protein interactions that illuminates novel features of WW domain-containing proteins and their protein interaction partners.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/gb-2006-7-4-r30", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439911", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "WW domain-containing proteins", 
      "domain-containing proteins", 
      "protein interaction partners", 
      "WW domains", 
      "interaction partners", 
      "protein interaction maps", 
      "yeast S. cerevisiae", 
      "protein interaction networks", 
      "proline-rich proteins", 
      "protein microarray technology", 
      "yeast lineages", 
      "eukaryotic proteins", 
      "cofactor biosynthesis", 
      "functional annotation", 
      "structural conservation", 
      "cellular processes", 
      "peroxisomal localization", 
      "interaction map", 
      "S. cerevisiae", 
      "interaction networks", 
      "protein turnover", 
      "microarray technology", 
      "functional role", 
      "protein", 
      "tuning of interactions", 
      "motif", 
      "intramolecular association", 
      "peptide ligands", 
      "comparative approach", 
      "WW", 
      "domain", 
      "orthologs", 
      "Saccharomyces", 
      "cerevisiae", 
      "lineages", 
      "biosynthesis", 
      "microarray", 
      "interaction", 
      "conservation", 
      "comparative analysis", 
      "annotation", 
      "partners", 
      "turnover", 
      "large number", 
      "substantial evidence", 
      "localization", 
      "enrichment", 
      "novel features", 
      "sites", 
      "role", 
      "ligands", 
      "variety", 
      "evidence", 
      "basis", 
      "association", 
      "analysis", 
      "maps", 
      "number", 
      "network", 
      "inter", 
      "ResultsWe", 
      "process", 
      "features", 
      "results", 
      "approach", 
      "tuning", 
      "model", 
      "technology", 
      "alternative", 
      "construction", 
      "technique", 
      "representation"
    ], 
    "name": "Comparative analysis of Saccharomyces cerevisiaeWW domains and their interacting proteins", 
    "pagination": "r30", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009417870"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2006-7-4-r30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16606443"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2006-7-4-r30", 
      "https://app.dimensions.ai/details/publication/pub.1009417870"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_420.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/gb-2006-7-4-r30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-4-r30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-4-r30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-4-r30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-4-r30'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      125 URIs      104 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2006-7-4-r30 schema:about N0dc3c80a2c16494a9f3b5945907682df
2 N0e4ae2e3b4b14b3e9a28c025cc6aa055
3 N118d558d3a114647af585893b11d0251
4 N2448db2a67824eef9f18c6c9ab7423c9
5 N320b5f8d3d6a4ffc8feab225b578b3a3
6 N3ce1b6e8859e4773af071bc3ddd8c046
7 N3e4d71e588ce45f8a664a5c0ef665af6
8 N47f7d414127e4293b8147e5dbb2ddb56
9 N4c73f2a6ce6f4e43ac1112c17e5d0c20
10 N5abc7849fec54f669e21efe03d65c511
11 N6eb0ee23d0ae422db76557083becb7bf
12 N7ce8756a3e14429cbe41b53b40c32a8e
13 Ncc59f60f24924effba95cb36d06367ea
14 Nf4620c29d5fd4abe895ed46a9c1d7ff8
15 Nfe0aee813d6640ebb815b8e99bfa09a7
16 anzsrc-for:06
17 anzsrc-for:0601
18 schema:author N3a308e4231a642b689a9d0b0720c0930
19 schema:citation sg:pub.10.1007/s00232001079
20 sg:pub.10.1038/35001009
21 sg:pub.10.1038/415141a
22 sg:pub.10.1038/415180a
23 sg:pub.10.1038/72378
24 sg:pub.10.1038/75556
25 sg:pub.10.1038/87562
26 sg:pub.10.1038/nature01644
27 sg:pub.10.1038/nature02062
28 sg:pub.10.1038/nbt1116
29 sg:pub.10.1038/nrg1272
30 sg:pub.10.1038/sj.onc.1207436
31 sg:pub.10.1186/jbiol23
32 schema:datePublished 2006-04-10
33 schema:datePublishedReg 2006-04-10
34 schema:description BackgroundThe WW domain is found in a large number of eukaryotic proteins implicated in a variety of cellular processes. WW domains bind proline-rich protein and peptide ligands, but the protein interaction partners of many WW domain-containing proteins in Saccharomyces cerevisiae are largely unknown.ResultsWe used protein microarray technology to generate a protein interaction map for 12 of the 13 WW domains present in proteins of the yeast S. cerevisiae. We observed 587 interactions between these 12 domains and 207 proteins, most of which have not previously been described. We analyzed the representation of functional annotations within the network, identifying enrichments for proteins with peroxisomal localization, as well as for proteins involved in protein turnover and cofactor biosynthesis. We compared orthologs of the interacting proteins to identify conserved motifs known to mediate WW domain interactions, and found substantial evidence for the structural conservation of such binding motifs throughout the yeast lineages. The comparative approach also revealed that several of the WW domain-containing proteins themselves have evolutionarily conserved WW domain binding sites, suggesting a functional role for inter- or intramolecular association between proteins that harbor WW domains. On the basis of these results, we propose a model for the tuning of interactions between WW domains and their protein interaction partners.ConclusionProtein microarrays provide an appealing alternative to existing techniques for the construction of protein interaction networks. Here we built a network composed of WW domain-protein interactions that illuminates novel features of WW domain-containing proteins and their protein interaction partners.
35 schema:genre article
36 schema:isAccessibleForFree true
37 schema:isPartOf N79ee4552474a4e78b1aba14e31be8656
38 Nd7be1eea0ee24656af02bac0ae0c4239
39 sg:journal.1023439
40 schema:keywords ResultsWe
41 S. cerevisiae
42 Saccharomyces
43 WW
44 WW domain-containing proteins
45 WW domains
46 alternative
47 analysis
48 annotation
49 approach
50 association
51 basis
52 biosynthesis
53 cellular processes
54 cerevisiae
55 cofactor biosynthesis
56 comparative analysis
57 comparative approach
58 conservation
59 construction
60 domain
61 domain-containing proteins
62 enrichment
63 eukaryotic proteins
64 evidence
65 features
66 functional annotation
67 functional role
68 inter
69 interaction
70 interaction map
71 interaction networks
72 interaction partners
73 intramolecular association
74 large number
75 ligands
76 lineages
77 localization
78 maps
79 microarray
80 microarray technology
81 model
82 motif
83 network
84 novel features
85 number
86 orthologs
87 partners
88 peptide ligands
89 peroxisomal localization
90 process
91 proline-rich proteins
92 protein
93 protein interaction maps
94 protein interaction networks
95 protein interaction partners
96 protein microarray technology
97 protein turnover
98 representation
99 results
100 role
101 sites
102 structural conservation
103 substantial evidence
104 technique
105 technology
106 tuning
107 tuning of interactions
108 turnover
109 variety
110 yeast S. cerevisiae
111 yeast lineages
112 schema:name Comparative analysis of Saccharomyces cerevisiaeWW domains and their interacting proteins
113 schema:pagination r30
114 schema:productId N2559f9f615644ad8bba82ef600fd45ff
115 N8fac985de1144a05bd0c34fd92b3413f
116 Nf28499ec32824afcb820377476341da6
117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009417870
118 https://doi.org/10.1186/gb-2006-7-4-r30
119 schema:sdDatePublished 2022-11-24T20:52
120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
121 schema:sdPublisher N1603d87609c5459c804221cc0625f900
122 schema:url https://doi.org/10.1186/gb-2006-7-4-r30
123 sgo:license sg:explorer/license/
124 sgo:sdDataset articles
125 rdf:type schema:ScholarlyArticle
126 N08f177e554dc49e7927e8d5a3a3fff52 schema:affiliation grid-institutes:grid.34477.33
127 schema:familyName Golob
128 schema:givenName Anna
129 rdf:type schema:Person
130 N0dc3c80a2c16494a9f3b5945907682df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Saccharomyces cerevisiae Proteins
132 rdf:type schema:DefinedTerm
133 N0e4ae2e3b4b14b3e9a28c025cc6aa055 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Molecular Sequence Data
135 rdf:type schema:DefinedTerm
136 N118d558d3a114647af585893b11d0251 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Ligands
138 rdf:type schema:DefinedTerm
139 N1603d87609c5459c804221cc0625f900 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 N2448db2a67824eef9f18c6c9ab7423c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Yeasts
143 rdf:type schema:DefinedTerm
144 N2559f9f615644ad8bba82ef600fd45ff schema:name doi
145 schema:value 10.1186/gb-2006-7-4-r30
146 rdf:type schema:PropertyValue
147 N320b5f8d3d6a4ffc8feab225b578b3a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Models, Biological
149 rdf:type schema:DefinedTerm
150 N3a308e4231a642b689a9d0b0720c0930 rdf:first sg:person.0610370442.26
151 rdf:rest N6adb06eba9d745379715ec77dda30b3a
152 N3ce1b6e8859e4773af071bc3ddd8c046 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Saccharomyces cerevisiae
154 rdf:type schema:DefinedTerm
155 N3e4d71e588ce45f8a664a5c0ef665af6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Protein Interaction Mapping
157 rdf:type schema:DefinedTerm
158 N47f7d414127e4293b8147e5dbb2ddb56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Amino Acid Sequence
160 rdf:type schema:DefinedTerm
161 N4c73f2a6ce6f4e43ac1112c17e5d0c20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Sequence Alignment
163 rdf:type schema:DefinedTerm
164 N5abc7849fec54f669e21efe03d65c511 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Biological Evolution
166 rdf:type schema:DefinedTerm
167 N6adb06eba9d745379715ec77dda30b3a rdf:first sg:person.016143442054.10
168 rdf:rest Nc34d019546e04c4cb0572889e1fd1f79
169 N6eb0ee23d0ae422db76557083becb7bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Protein Array Analysis
171 rdf:type schema:DefinedTerm
172 N79ee4552474a4e78b1aba14e31be8656 schema:issueNumber 4
173 rdf:type schema:PublicationIssue
174 N7ce8756a3e14429cbe41b53b40c32a8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Binding Sites
176 rdf:type schema:DefinedTerm
177 N8fac985de1144a05bd0c34fd92b3413f schema:name dimensions_id
178 schema:value pub.1009417870
179 rdf:type schema:PropertyValue
180 N9a2d25ef56b146359d58a79528f8dbed rdf:first sg:person.01031401420.05
181 rdf:rest Nf1ecee6489374cf2bdfb3f76f66a5507
182 Nc34d019546e04c4cb0572889e1fd1f79 rdf:first N08f177e554dc49e7927e8d5a3a3fff52
183 rdf:rest N9a2d25ef56b146359d58a79528f8dbed
184 Ncc59f60f24924effba95cb36d06367ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Amino Acid Motifs
186 rdf:type schema:DefinedTerm
187 Ncf8d21db9913464bb35726c6d90ff118 rdf:first sg:person.014624417057.73
188 rdf:rest rdf:nil
189 Nd7be1eea0ee24656af02bac0ae0c4239 schema:volumeNumber 7
190 rdf:type schema:PublicationVolume
191 Nf1ecee6489374cf2bdfb3f76f66a5507 rdf:first sg:person.01027032460.04
192 rdf:rest Ncf8d21db9913464bb35726c6d90ff118
193 Nf28499ec32824afcb820377476341da6 schema:name pubmed_id
194 schema:value 16606443
195 rdf:type schema:PropertyValue
196 Nf4620c29d5fd4abe895ed46a9c1d7ff8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Phylogeny
198 rdf:type schema:DefinedTerm
199 Nfe0aee813d6640ebb815b8e99bfa09a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Protein Structure, Tertiary
201 rdf:type schema:DefinedTerm
202 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
203 schema:name Biological Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
206 schema:name Biochemistry and Cell Biology
207 rdf:type schema:DefinedTerm
208 sg:grant.2439911 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2006-7-4-r30
209 rdf:type schema:MonetaryGrant
210 sg:journal.1023439 schema:issn 1465-6906
211 1474-760X
212 schema:name Genome Biology
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01027032460.04 schema:affiliation grid-institutes:None
216 schema:familyName Michaud
217 schema:givenName Gregory A
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027032460.04
219 rdf:type schema:Person
220 sg:person.01031401420.05 schema:affiliation grid-institutes:grid.26009.3d
221 schema:familyName Stajich
222 schema:givenName Jason E
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031401420.05
224 rdf:type schema:Person
225 sg:person.014624417057.73 schema:affiliation grid-institutes:grid.34477.33
226 schema:familyName Fields
227 schema:givenName Stanley
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624417057.73
229 rdf:type schema:Person
230 sg:person.016143442054.10 schema:affiliation grid-institutes:grid.272799.0
231 schema:familyName Miller
232 schema:givenName John P
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143442054.10
234 rdf:type schema:Person
235 sg:person.0610370442.26 schema:affiliation grid-institutes:grid.34477.33
236 schema:familyName Hesselberth
237 schema:givenName Jay R
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610370442.26
239 rdf:type schema:Person
240 sg:pub.10.1007/s00232001079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001718267
241 https://doi.org/10.1007/s00232001079
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
244 https://doi.org/10.1038/35001009
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/415141a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484556
247 https://doi.org/10.1038/415141a
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/415180a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005267371
250 https://doi.org/10.1038/415180a
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/72378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009863341
253 https://doi.org/10.1038/72378
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
256 https://doi.org/10.1038/75556
257 rdf:type schema:CreativeWork
258 sg:pub.10.1038/87562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042273938
259 https://doi.org/10.1038/87562
260 rdf:type schema:CreativeWork
261 sg:pub.10.1038/nature01644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517605
262 https://doi.org/10.1038/nature01644
263 rdf:type schema:CreativeWork
264 sg:pub.10.1038/nature02062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015857765
265 https://doi.org/10.1038/nature02062
266 rdf:type schema:CreativeWork
267 sg:pub.10.1038/nbt1116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008146481
268 https://doi.org/10.1038/nbt1116
269 rdf:type schema:CreativeWork
270 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
271 https://doi.org/10.1038/nrg1272
272 rdf:type schema:CreativeWork
273 sg:pub.10.1038/sj.onc.1207436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004144374
274 https://doi.org/10.1038/sj.onc.1207436
275 rdf:type schema:CreativeWork
276 sg:pub.10.1186/jbiol23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006522554
277 https://doi.org/10.1186/jbiol23
278 rdf:type schema:CreativeWork
279 grid-institutes:None schema:alternateName Invitrogen, East Main Street, 06405, Branford, CT, USA
280 schema:name Invitrogen, East Main Street, 06405, Branford, CT, USA
281 rdf:type schema:Organization
282 grid-institutes:grid.26009.3d schema:alternateName Department of Molecular Genetics and Microbiology, Duke University, 27710, Durham, NC, USA
283 schema:name Department of Molecular Genetics and Microbiology, Duke University, 27710, Durham, NC, USA
284 rdf:type schema:Organization
285 grid-institutes:grid.272799.0 schema:alternateName Buck Institute, Redwood Boulevard, 94945, Novato, CA, USA
286 schema:name Buck Institute, Redwood Boulevard, 94945, Novato, CA, USA
287 Department of Genome Sciences, University of Washington, Box 357730, 98195, Seattle, WA, USA
288 rdf:type schema:Organization
289 grid-institutes:grid.34477.33 schema:alternateName Department of Genome Sciences, University of Washington, Box 357730, 98195, Seattle, WA, USA
290 Department of Medicine, and Howard Hughes Medical Institute, University of Washington, Box 357730, 98195, Seattle, WA, USA
291 schema:name Department of Genome Sciences, University of Washington, Box 357730, 98195, Seattle, WA, USA
292 Department of Medicine, and Howard Hughes Medical Institute, University of Washington, Box 357730, 98195, Seattle, WA, USA
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...