A consensus prognostic gene expression classifier for ER positive breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-04

AUTHORS

Andrew E Teschendorff, Ali Naderi, Nuno L Barbosa-Morais, Sarah E Pinder, Ian O Ellis, Sam Aparicio, James D Brenton, Carlos Caldas

ABSTRACT

BACKGROUND: A consensus prognostic gene expression classifier is still elusive in heterogeneous diseases such as breast cancer. RESULTS: Here we perform a combined analysis of three major breast cancer microarray data sets to hone in on a universally valid prognostic molecular classifier in estrogen receptor (ER) positive tumors. Using a recently developed robust measure of prognostic separation, we further validate the prognostic classifier in three external independent cohorts, confirming the validity of our molecular classifier in a total of 877 ER positive samples. Furthermore, we find that molecular classifiers may not outperform classical prognostic indices but that they can be used in hybrid molecular-pathological classification schemes to improve prognostic separation. CONCLUSION: The prognostic molecular classifier presented here is the first to be valid in over 877 ER positive breast cancer samples and across three different microarray platforms. Larger multi-institutional studies will be needed to fully determine the added prognostic value of molecular classifiers when combined with standard prognostic factors. More... »

PAGES

r101

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2006-7-10-r101

DOI

http://dx.doi.org/10.1186/gb-2006-7-10-r101

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049083057

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17076897


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Estrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teschendorff", 
        "givenName": "Andrew E", 
        "id": "sg:person.01317257236.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317257236.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naderi", 
        "givenName": "Ali", 
        "id": "sg:person.01371052023.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371052023.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lisbon", 
          "id": "https://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK", 
            "Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barbosa-Morais", 
        "givenName": "Nuno L", 
        "id": "sg:person.0674725213.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674725213.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Pathology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinder", 
        "givenName": "Sarah E", 
        "id": "sg:person.014576043464.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014576043464.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Histopathology, Nottingham City Hospital NHS Trust and University of Nottingham, NG5 1PB, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellis", 
        "givenName": "Ian O", 
        "id": "sg:person.01054612302.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054612302.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BC Cancer Agency", 
          "id": "https://www.grid.ac/institutes/grid.248762.d", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK", 
            "Molecular Oncology and Breast Cancer Program, the BC Cancer Research Centre, West 10th Avenue, V5Z 1L3, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aparicio", 
        "givenName": "Sam", 
        "id": "sg:person.01176734334.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176734334.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brenton", 
        "givenName": "James D", 
        "id": "sg:person.01223360024.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223360024.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caldas", 
        "givenName": "Carlos", 
        "id": "sg:person.01072152660.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072152660.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1732912100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000610606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506230102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002515049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409462102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004658815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006607914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008016941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014277846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014277846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015725266", 
          "https://doi.org/10.1186/1471-2164-7-96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017682245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017682245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa041588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022156409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601231103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022802390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450491", 
          "https://doi.org/10.1186/bcr1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450491", 
          "https://doi.org/10.1186/bcr1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024060421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa052933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024869935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024977029", 
          "https://doi.org/10.1038/sj.onc.1209920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024977029", 
          "https://doi.org/10.1038/sj.onc.1209920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024993077", 
          "https://doi.org/10.1038/ng1434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024993077", 
          "https://doi.org/10.1038/ng1434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-5-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025733146", 
          "https://doi.org/10.1186/1471-2164-5-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.10.977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029038829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0401994101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029042817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030186249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/dji168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030610687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djj052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030644591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01840834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032983382", 
          "https://doi.org/10.1007/bf01840834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033139728", 
          "https://doi.org/10.1186/1471-2105-5-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033139728", 
          "https://doi.org/10.1186/1471-2105-5-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.03.9115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033715812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2004.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035505159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035708181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/mb:30:2:151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036139232", 
          "https://doi.org/10.1385/mb:30:2:151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa021967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038600096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047084748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17947-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047788005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-5-94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051184694", 
          "https://doi.org/10.1186/1471-2164-5-94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.03.3845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064204218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077603669", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04", 
    "datePublishedReg": "2006-04-01", 
    "description": "BACKGROUND: A consensus prognostic gene expression classifier is still elusive in heterogeneous diseases such as breast cancer.\nRESULTS: Here we perform a combined analysis of three major breast cancer microarray data sets to hone in on a universally valid prognostic molecular classifier in estrogen receptor (ER) positive tumors. Using a recently developed robust measure of prognostic separation, we further validate the prognostic classifier in three external independent cohorts, confirming the validity of our molecular classifier in a total of 877 ER positive samples. Furthermore, we find that molecular classifiers may not outperform classical prognostic indices but that they can be used in hybrid molecular-pathological classification schemes to improve prognostic separation.\nCONCLUSION: The prognostic molecular classifier presented here is the first to be valid in over 877 ER positive breast cancer samples and across three different microarray platforms. Larger multi-institutional studies will be needed to fully determine the added prognostic value of molecular classifiers when combined with standard prognostic factors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2006-7-10-r101", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "A consensus prognostic gene expression classifier for ER positive breast cancer", 
    "pagination": "r101", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e9d2ec224485a3761e9d76ed7a8ae06393748177d8a9d55fd2094087e788dfa9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17076897"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2006-7-10-r101"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049083057"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2006-7-10-r101", 
      "https://app.dimensions.ai/details/publication/pub.1049083057"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2006-7-10-r101"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-10-r101'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-10-r101'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-10-r101'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2006-7-10-r101'


 

This table displays all metadata directly associated to this object as RDF triples.

284 TRIPLES      21 PREDICATES      74 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2006-7-10-r101 schema:about N08fd29abeb4e4d3ba040066d3df471ea
2 N191bb845b6384ccd8693b7cec301cf7b
3 N20765948eeb54a1ab8a00d02befb73c1
4 N2a3f1c152ff2449cb09c1bb0b6583124
5 N39ecd5373c62430c8549686088fb9798
6 N460a7abf1ad5452d865e1c935fe791c6
7 N4fafea067fc7431bb31c5da6bb0e94c4
8 Na6e5820aed84426baa7ad40eeddd3c85
9 Nd62f4d9d26bc4d1cafd00b2e928a0578
10 Ndc41f4dc3ba44153a73dcf9948396ed3
11 anzsrc-for:11
12 anzsrc-for:1112
13 schema:author Ncfab88af850f419fad5dceaca0fabec3
14 schema:citation sg:pub.10.1007/bf01840834
15 sg:pub.10.1038/415530a
16 sg:pub.10.1038/ng1434
17 sg:pub.10.1038/sj.onc.1209920
18 sg:pub.10.1186/1471-2105-5-16
19 sg:pub.10.1186/1471-2164-5-9
20 sg:pub.10.1186/1471-2164-5-94
21 sg:pub.10.1186/1471-2164-7-96
22 sg:pub.10.1186/bcr1325
23 sg:pub.10.1385/mb:30:2:151
24 https://app.dimensions.ai/details/publication/pub.1077603669
25 https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5
26 https://doi.org/10.1002/sim.1621
27 https://doi.org/10.1002/sim.1691
28 https://doi.org/10.1002/sim.2331
29 https://doi.org/10.1016/j.ejca.2004.02.025
30 https://doi.org/10.1016/s0140-6736(05)17866-0
31 https://doi.org/10.1016/s0140-6736(05)17947-1
32 https://doi.org/10.1056/nejmoa021967
33 https://doi.org/10.1056/nejmoa041588
34 https://doi.org/10.1056/nejmoa052933
35 https://doi.org/10.1073/pnas.0401994101
36 https://doi.org/10.1073/pnas.0409462102
37 https://doi.org/10.1073/pnas.0506230102
38 https://doi.org/10.1073/pnas.0601231103
39 https://doi.org/10.1073/pnas.1732912100
40 https://doi.org/10.1093/bioinformatics/17.10.977
41 https://doi.org/10.1093/bioinformatics/bth469
42 https://doi.org/10.1093/bioinformatics/bti466
43 https://doi.org/10.1093/jnci/dji168
44 https://doi.org/10.1093/jnci/djj052
45 https://doi.org/10.1093/nar/30.1.38
46 https://doi.org/10.1111/1467-9868.00358
47 https://doi.org/10.1200/jco.2005.03.3845
48 https://doi.org/10.1200/jco.2005.03.9115
49 schema:datePublished 2006-04
50 schema:datePublishedReg 2006-04-01
51 schema:description BACKGROUND: A consensus prognostic gene expression classifier is still elusive in heterogeneous diseases such as breast cancer. RESULTS: Here we perform a combined analysis of three major breast cancer microarray data sets to hone in on a universally valid prognostic molecular classifier in estrogen receptor (ER) positive tumors. Using a recently developed robust measure of prognostic separation, we further validate the prognostic classifier in three external independent cohorts, confirming the validity of our molecular classifier in a total of 877 ER positive samples. Furthermore, we find that molecular classifiers may not outperform classical prognostic indices but that they can be used in hybrid molecular-pathological classification schemes to improve prognostic separation. CONCLUSION: The prognostic molecular classifier presented here is the first to be valid in over 877 ER positive breast cancer samples and across three different microarray platforms. Larger multi-institutional studies will be needed to fully determine the added prognostic value of molecular classifiers when combined with standard prognostic factors.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N526949a9a3d447f8bb03f6c9802d797c
56 Nd3d0db5d6d534ba1b83b8a6b36de2630
57 sg:journal.1023439
58 schema:name A consensus prognostic gene expression classifier for ER positive breast cancer
59 schema:pagination r101
60 schema:productId N40f4966f14ce4942bb3180cdce8be6e0
61 N67cd225ec862414aa28240711a6f1454
62 N9c12453982024e2293a5f76a2661a1fe
63 Nd91008964cf74bb8ab12df2215becc43
64 Nff622182a70d4c9a9ba23d9a079c3dac
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049083057
66 https://doi.org/10.1186/gb-2006-7-10-r101
67 schema:sdDatePublished 2019-04-10T15:02
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nc1eb68274df34d6bb2e2d003bddea38b
70 schema:url http://link.springer.com/10.1186%2Fgb-2006-7-10-r101
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N08fd29abeb4e4d3ba040066d3df471ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Humans
76 rdf:type schema:DefinedTerm
77 N107a727f305e4f9fa72d4b8762dc8c68 rdf:first sg:person.0674725213.39
78 rdf:rest N32786bdb8667452ca67d779809e59bdc
79 N1314db90e0c6434c9ac821f12fb90527 rdf:first sg:person.01223360024.03
80 rdf:rest Nfbba24a46fd4483ea0a280101b9206fd
81 N17a38c37ba8f434f95d54ac174e250a6 rdf:first sg:person.01176734334.34
82 rdf:rest N1314db90e0c6434c9ac821f12fb90527
83 N191bb845b6384ccd8693b7cec301cf7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Genetic Markers
85 rdf:type schema:DefinedTerm
86 N20765948eeb54a1ab8a00d02befb73c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Cohort Studies
88 rdf:type schema:DefinedTerm
89 N2a3f1c152ff2449cb09c1bb0b6583124 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Prognosis
91 rdf:type schema:DefinedTerm
92 N32786bdb8667452ca67d779809e59bdc rdf:first sg:person.014576043464.09
93 rdf:rest Nea7cc39470324977a02a8d9297206cdd
94 N39ecd5373c62430c8549686088fb9798 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Breast Neoplasms
96 rdf:type schema:DefinedTerm
97 N40f4966f14ce4942bb3180cdce8be6e0 schema:name dimensions_id
98 schema:value pub.1049083057
99 rdf:type schema:PropertyValue
100 N460a7abf1ad5452d865e1c935fe791c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Receptors, Estrogen
102 rdf:type schema:DefinedTerm
103 N4fafea067fc7431bb31c5da6bb0e94c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Reproducibility of Results
105 rdf:type schema:DefinedTerm
106 N526949a9a3d447f8bb03f6c9802d797c schema:issueNumber 10
107 rdf:type schema:PublicationIssue
108 N67cd225ec862414aa28240711a6f1454 schema:name pubmed_id
109 schema:value 17076897
110 rdf:type schema:PropertyValue
111 N9c12453982024e2293a5f76a2661a1fe schema:name readcube_id
112 schema:value e9d2ec224485a3761e9d76ed7a8ae06393748177d8a9d55fd2094087e788dfa9
113 rdf:type schema:PropertyValue
114 Na6e1c9f5676b461dbc637afeebfa0f03 rdf:first sg:person.01371052023.82
115 rdf:rest N107a727f305e4f9fa72d4b8762dc8c68
116 Na6e5820aed84426baa7ad40eeddd3c85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Female
118 rdf:type schema:DefinedTerm
119 Nc1eb68274df34d6bb2e2d003bddea38b schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Ncfab88af850f419fad5dceaca0fabec3 rdf:first sg:person.01317257236.92
122 rdf:rest Na6e1c9f5676b461dbc637afeebfa0f03
123 Nd3d0db5d6d534ba1b83b8a6b36de2630 schema:volumeNumber 7
124 rdf:type schema:PublicationVolume
125 Nd62f4d9d26bc4d1cafd00b2e928a0578 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Gene Expression Profiling
127 rdf:type schema:DefinedTerm
128 Nd91008964cf74bb8ab12df2215becc43 schema:name nlm_unique_id
129 schema:value 100960660
130 rdf:type schema:PropertyValue
131 Ndc41f4dc3ba44153a73dcf9948396ed3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Oligonucleotide Array Sequence Analysis
133 rdf:type schema:DefinedTerm
134 Nea7cc39470324977a02a8d9297206cdd rdf:first sg:person.01054612302.65
135 rdf:rest N17a38c37ba8f434f95d54ac174e250a6
136 Nfbba24a46fd4483ea0a280101b9206fd rdf:first sg:person.01072152660.47
137 rdf:rest rdf:nil
138 Nff622182a70d4c9a9ba23d9a079c3dac schema:name doi
139 schema:value 10.1186/gb-2006-7-10-r101
140 rdf:type schema:PropertyValue
141 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
142 schema:name Medical and Health Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
145 schema:name Oncology and Carcinogenesis
146 rdf:type schema:DefinedTerm
147 sg:journal.1023439 schema:issn 1465-6906
148 1474-760X
149 schema:name Genome Biology
150 rdf:type schema:Periodical
151 sg:person.01054612302.65 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
152 schema:familyName Ellis
153 schema:givenName Ian O
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054612302.65
155 rdf:type schema:Person
156 sg:person.01072152660.47 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
157 schema:familyName Caldas
158 schema:givenName Carlos
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072152660.47
160 rdf:type schema:Person
161 sg:person.01176734334.34 schema:affiliation https://www.grid.ac/institutes/grid.248762.d
162 schema:familyName Aparicio
163 schema:givenName Sam
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176734334.34
165 rdf:type schema:Person
166 sg:person.01223360024.03 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
167 schema:familyName Brenton
168 schema:givenName James D
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223360024.03
170 rdf:type schema:Person
171 sg:person.01317257236.92 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
172 schema:familyName Teschendorff
173 schema:givenName Andrew E
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317257236.92
175 rdf:type schema:Person
176 sg:person.01371052023.82 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
177 schema:familyName Naderi
178 schema:givenName Ali
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371052023.82
180 rdf:type schema:Person
181 sg:person.014576043464.09 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
182 schema:familyName Pinder
183 schema:givenName Sarah E
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014576043464.09
185 rdf:type schema:Person
186 sg:person.0674725213.39 schema:affiliation https://www.grid.ac/institutes/grid.9983.b
187 schema:familyName Barbosa-Morais
188 schema:givenName Nuno L
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674725213.39
190 rdf:type schema:Person
191 sg:pub.10.1007/bf01840834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032983382
192 https://doi.org/10.1007/bf01840834
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
195 https://doi.org/10.1038/415530a
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/ng1434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024993077
198 https://doi.org/10.1038/ng1434
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/sj.onc.1209920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024977029
201 https://doi.org/10.1038/sj.onc.1209920
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2105-5-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033139728
204 https://doi.org/10.1186/1471-2105-5-16
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2164-5-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025733146
207 https://doi.org/10.1186/1471-2164-5-9
208 rdf:type schema:CreativeWork
209 sg:pub.10.1186/1471-2164-5-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051184694
210 https://doi.org/10.1186/1471-2164-5-94
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/1471-2164-7-96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015725266
213 https://doi.org/10.1186/1471-2164-7-96
214 rdf:type schema:CreativeWork
215 sg:pub.10.1186/bcr1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023450491
216 https://doi.org/10.1186/bcr1325
217 rdf:type schema:CreativeWork
218 sg:pub.10.1385/mb:30:2:151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036139232
219 https://doi.org/10.1385/mb:30:2:151
220 rdf:type schema:CreativeWork
221 https://app.dimensions.ai/details/publication/pub.1077603669 schema:CreativeWork
222 https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017682245
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/sim.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024060421
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/sim.1691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035708181
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/sim.2331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014277846
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.ejca.2004.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035505159
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/s0140-6736(05)17866-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014542455
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/s0140-6736(05)17947-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788005
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1056/nejmoa021967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038600096
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1056/nejmoa041588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022156409
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1056/nejmoa052933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024869935
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1073/pnas.0401994101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029042817
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1073/pnas.0409462102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004658815
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1073/pnas.0506230102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002515049
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1073/pnas.0601231103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022802390
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1073/pnas.1732912100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000610606
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/bioinformatics/17.10.977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029038829
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/bioinformatics/bth469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008016941
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1093/bioinformatics/bti466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047084748
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/jnci/dji168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030610687
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/jnci/djj052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030644591
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/nar/30.1.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030186249
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1111/1467-9868.00358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006607914
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1200/jco.2005.03.3845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204218
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1200/jco.2005.03.9115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033715812
269 rdf:type schema:CreativeWork
270 https://www.grid.ac/institutes/grid.248762.d schema:alternateName BC Cancer Agency
271 schema:name Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK
272 Molecular Oncology and Breast Cancer Program, the BC Cancer Research Centre, West 10th Avenue, V5Z 1L3, Vancouver, BC, Canada
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
275 schema:name Histopathology, Nottingham City Hospital NHS Trust and University of Nottingham, NG5 1PB, Nottingham, UK
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
278 schema:name Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK
279 Cancer Genomics Program, Department of Pathology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.9983.b schema:alternateName University of Lisbon
282 schema:name Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Center, Hills Road, CB2 2XZ, Cambridge, UK
283 Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028, Lisbon, Portugal
284 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...