Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-05-26

AUTHORS

Aidan Budd, Stephanie Blandin, Elena A Levashina, Toby J Gibson

ABSTRACT

BackgroundInvasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion.ResultsDatabase searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor.ConclusionsMetazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might provide useful targets for enhancing vaccine efficacy in combating infections. More... »

PAGES

r38

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2004-5-6-r38

DOI

http://dx.doi.org/10.1186/gb-2004-5-6-r38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023827897

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15186489


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alphaproteobacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteroidetes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Betaproteobacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cyanobacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fusobacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Transfer, Horizontal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetospirillum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spirochaetales", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "alpha-Macroglobulins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, 69012, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4709.a", 
          "name": [
            "European Molecular Biology Laboratory, 69012, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budd", 
        "givenName": "Aidan", 
        "id": "sg:person.01337730763.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337730763.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, 69012, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4709.a", 
          "name": [
            "European Molecular Biology Laboratory, 69012, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blandin", 
        "givenName": "Stephanie", 
        "id": "sg:person.0614755451.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614755451.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UPR 9022 du CNRS, IBMC, rue Ren\u00e9 Descartes, F-67087, Strasbourg CEDEX, France", 
          "id": "http://www.grid.ac/institutes/grid.465534.5", 
          "name": [
            "UPR 9022 du CNRS, IBMC, rue Ren\u00e9 Descartes, F-67087, Strasbourg CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levashina", 
        "givenName": "Elena A", 
        "id": "sg:person.01144651257.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144651257.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, 69012, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4709.a", 
          "name": [
            "European Molecular Biology Laboratory, 69012, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gibson", 
        "givenName": "Toby J", 
        "id": "sg:person.01254663627.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254663627.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35082058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052379739", 
          "https://doi.org/10.1038/35082058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00388657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050975794", 
          "https://doi.org/10.1007/bf00388657"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-05-26", 
    "datePublishedReg": "2004-05-26", 
    "description": "BackgroundInvasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor \u03b12-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion.ResultsDatabase searches with metazoan \u03b12-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial \u03b12-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial \u03b12-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial \u03b12-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial \u03b12-macroglobulins, indicating that bacterial \u03b12-macroglobulin is a colonization rather than a virulence factor.ConclusionsMetazoan \u03b12-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. \u03b12-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial \u03b12-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial \u03b12-macroglobulins might provide useful targets for enhancing vaccine efficacy in combating infections.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/gb-2004-5-6-r38", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "horizontal gene transfer", 
      "\u03b12-macroglobulin gene", 
      "gene transfer", 
      "independent horizontal gene transfers", 
      "bacterial species", 
      "most bacterial species", 
      "different host tissues", 
      "host antimicrobial defense", 
      "metazoan genomes", 
      "higher eukaryotes", 
      "bacterial homolog", 
      "phylogenetic distribution", 
      "metazoan hosts", 
      "bacterial proteome", 
      "diverse clade", 
      "related species", 
      "successful invasion", 
      "colonization genes", 
      "host genes", 
      "\u03b12-macroglobulin", 
      "homologous sequences", 
      "peptidoglycan synthesis", 
      "purple bacteria", 
      "genes", 
      "invasive bacteria", 
      "repair system", 
      "antimicrobial defense", 
      "species", 
      "virulence factors", 
      "host tissues", 
      "bacteria", 
      "colonization factors", 
      "useful target", 
      "protease", 
      "defense", 
      "host", 
      "Helicobacter hepaticus", 
      "sequence", 
      "eukaryotes", 
      "Thermotogae", 
      "clade", 
      "Planctomycetes", 
      "proteome", 
      "cyanobacteria", 
      "homolog", 
      "genome", 
      "transglycosylase", 
      "Bacteroidetes", 
      "Fusobacteria", 
      "PBP1C", 
      "descent model", 
      "parasites", 
      "colonization", 
      "pathogens", 
      "invasion", 
      "Helicobacter pylori", 
      "spirochetes", 
      "target", 
      "hepaticus", 
      "tissue", 
      "factors", 
      "transfer", 
      "synthesis", 
      "more time", 
      "infection", 
      "distribution", 
      "reverse", 
      "pylori", 
      "system", 
      "search", 
      "time", 
      "model", 
      "efficacy", 
      "vaccine efficacy", 
      "PBPC"
    ], 
    "name": "Bacterial \u03b12-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?", 
    "pagination": "r38", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023827897"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2004-5-6-r38"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15186489"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2004-5-6-r38", 
      "https://app.dimensions.ai/details/publication/pub.1023827897"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_383.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/gb-2004-5-6-r38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-6-r38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-6-r38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-6-r38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-6-r38'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      124 URIs      112 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2004-5-6-r38 schema:about N19846c0e639b41469d9db9951667965f
2 N1cc43bf7b9e54e258340dbcfdd4e667a
3 N1dfe4a485170404a8911527b13dbe2c6
4 N2c1a645c5b384a419902e53b749d7a6d
5 N358b495c9ecc491ab90a27072ab29dd7
6 N64049a75ab984062888c0e59d1c4aec2
7 N80842301283a4ed48a98c05263dd8a2c
8 N88d907b6d4494293b2d14edc88002c65
9 N8a10929ad3e1455f8006ef6b2433cc01
10 Nae96006ccf8a4d7696779e0a1011ed79
11 Naf63c7b443ce4065b6f8caf40624d284
12 Nb218a4260cbf47e0947eb2ddc29d649f
13 Nb80fc124e18b4727a2874e619dcc3772
14 Nba76e075e880440caa937dea93b8b93b
15 Nbb33411a1a7b482a99aac7d75d05a33f
16 Nbbd29207fc334352a07079d0719d16d4
17 Nc9e157261ceb42a6a0ea6212827687a9
18 Ncd31a9b049044d7f853f309214aefd5a
19 Ne060598cf60147ca9b2365a6090973c2
20 Neb20239b692b44b5b56691d021f832c2
21 anzsrc-for:06
22 anzsrc-for:0604
23 anzsrc-for:0605
24 schema:author Nd213dedd0d5c44ffb183a896d5d5b27f
25 schema:citation sg:pub.10.1007/bf00388657
26 sg:pub.10.1038/35057062
27 sg:pub.10.1038/35082058
28 schema:datePublished 2004-05-26
29 schema:datePublishedReg 2004-05-26
30 schema:description BackgroundInvasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion.ResultsDatabase searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor.ConclusionsMetazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might provide useful targets for enhancing vaccine efficacy in combating infections.
31 schema:genre article
32 schema:isAccessibleForFree true
33 schema:isPartOf Nf00b902844e146309868445f3ed93fb6
34 Nfcc08ea644824207be182c32ad094eb4
35 sg:journal.1023439
36 schema:keywords Bacteroidetes
37 Fusobacteria
38 Helicobacter hepaticus
39 Helicobacter pylori
40 PBP1C
41 PBPC
42 Planctomycetes
43 Thermotogae
44 antimicrobial defense
45 bacteria
46 bacterial homolog
47 bacterial proteome
48 bacterial species
49 clade
50 colonization
51 colonization factors
52 colonization genes
53 cyanobacteria
54 defense
55 descent model
56 different host tissues
57 distribution
58 diverse clade
59 efficacy
60 eukaryotes
61 factors
62 gene transfer
63 genes
64 genome
65 hepaticus
66 higher eukaryotes
67 homolog
68 homologous sequences
69 horizontal gene transfer
70 host
71 host antimicrobial defense
72 host genes
73 host tissues
74 independent horizontal gene transfers
75 infection
76 invasion
77 invasive bacteria
78 metazoan genomes
79 metazoan hosts
80 model
81 more time
82 most bacterial species
83 parasites
84 pathogens
85 peptidoglycan synthesis
86 phylogenetic distribution
87 protease
88 proteome
89 purple bacteria
90 pylori
91 related species
92 repair system
93 reverse
94 search
95 sequence
96 species
97 spirochetes
98 successful invasion
99 synthesis
100 system
101 target
102 time
103 tissue
104 transfer
105 transglycosylase
106 useful target
107 vaccine efficacy
108 virulence factors
109 α2-macroglobulin
110 α2-macroglobulin gene
111 schema:name Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?
112 schema:pagination r38
113 schema:productId N2f88ffeff58f4a348891eef63e63e038
114 N8ae8e1704ddb41e58c3ac1ae87d75159
115 N9caf06b40a674a10bac353e0e605a0dc
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023827897
117 https://doi.org/10.1186/gb-2004-5-6-r38
118 schema:sdDatePublished 2022-09-02T15:50
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher Ne19915ee498048b48e27e1eea20d0e24
121 schema:url https://doi.org/10.1186/gb-2004-5-6-r38
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N19846c0e639b41469d9db9951667965f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name alpha-Macroglobulins
127 rdf:type schema:DefinedTerm
128 N1cc43bf7b9e54e258340dbcfdd4e667a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Humans
130 rdf:type schema:DefinedTerm
131 N1dfe4a485170404a8911527b13dbe2c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Oligonucleotide Array Sequence Analysis
133 rdf:type schema:DefinedTerm
134 N2c1a645c5b384a419902e53b749d7a6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Molecular Sequence Data
136 rdf:type schema:DefinedTerm
137 N2f88ffeff58f4a348891eef63e63e038 schema:name dimensions_id
138 schema:value pub.1023827897
139 rdf:type schema:PropertyValue
140 N3053adddb5c74f48b272b4916a41dc73 rdf:first sg:person.01254663627.46
141 rdf:rest rdf:nil
142 N358b495c9ecc491ab90a27072ab29dd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Bacteroidetes
144 rdf:type schema:DefinedTerm
145 N64049a75ab984062888c0e59d1c4aec2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Cyanobacteria
147 rdf:type schema:DefinedTerm
148 N80842301283a4ed48a98c05263dd8a2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Betaproteobacteria
150 rdf:type schema:DefinedTerm
151 N88d907b6d4494293b2d14edc88002c65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Alphaproteobacteria
153 rdf:type schema:DefinedTerm
154 N8a10929ad3e1455f8006ef6b2433cc01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Genome, Bacterial
156 rdf:type schema:DefinedTerm
157 N8ae8e1704ddb41e58c3ac1ae87d75159 schema:name doi
158 schema:value 10.1186/gb-2004-5-6-r38
159 rdf:type schema:PropertyValue
160 N911b1607aa2e4c0fa754f5b49af978af rdf:first sg:person.0614755451.83
161 rdf:rest Nb306d46a3508481e827db5271d6620b7
162 N9caf06b40a674a10bac353e0e605a0dc schema:name pubmed_id
163 schema:value 15186489
164 rdf:type schema:PropertyValue
165 Nae96006ccf8a4d7696779e0a1011ed79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Spirochaetales
167 rdf:type schema:DefinedTerm
168 Naf63c7b443ce4065b6f8caf40624d284 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Gene Expression Profiling
170 rdf:type schema:DefinedTerm
171 Nb218a4260cbf47e0947eb2ddc29d649f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Phylogeny
173 rdf:type schema:DefinedTerm
174 Nb306d46a3508481e827db5271d6620b7 rdf:first sg:person.01144651257.72
175 rdf:rest N3053adddb5c74f48b272b4916a41dc73
176 Nb80fc124e18b4727a2874e619dcc3772 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Bacterial Proteins
178 rdf:type schema:DefinedTerm
179 Nba76e075e880440caa937dea93b8b93b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Gene Transfer, Horizontal
181 rdf:type schema:DefinedTerm
182 Nbb33411a1a7b482a99aac7d75d05a33f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Amino Acid Sequence
184 rdf:type schema:DefinedTerm
185 Nbbd29207fc334352a07079d0719d16d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Magnetospirillum
187 rdf:type schema:DefinedTerm
188 Nc9e157261ceb42a6a0ea6212827687a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Genes, Bacterial
190 rdf:type schema:DefinedTerm
191 Ncd31a9b049044d7f853f309214aefd5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Databases, Protein
193 rdf:type schema:DefinedTerm
194 Nd213dedd0d5c44ffb183a896d5d5b27f rdf:first sg:person.01337730763.73
195 rdf:rest N911b1607aa2e4c0fa754f5b49af978af
196 Ne060598cf60147ca9b2365a6090973c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Computational Biology
198 rdf:type schema:DefinedTerm
199 Ne19915ee498048b48e27e1eea20d0e24 schema:name Springer Nature - SN SciGraph project
200 rdf:type schema:Organization
201 Neb20239b692b44b5b56691d021f832c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Fusobacteria
203 rdf:type schema:DefinedTerm
204 Nf00b902844e146309868445f3ed93fb6 schema:issueNumber 6
205 rdf:type schema:PublicationIssue
206 Nfcc08ea644824207be182c32ad094eb4 schema:volumeNumber 5
207 rdf:type schema:PublicationVolume
208 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
209 schema:name Biological Sciences
210 rdf:type schema:DefinedTerm
211 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
212 schema:name Genetics
213 rdf:type schema:DefinedTerm
214 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
215 schema:name Microbiology
216 rdf:type schema:DefinedTerm
217 sg:journal.1023439 schema:issn 1465-6906
218 1474-760X
219 schema:name Genome Biology
220 schema:publisher Springer Nature
221 rdf:type schema:Periodical
222 sg:person.01144651257.72 schema:affiliation grid-institutes:grid.465534.5
223 schema:familyName Levashina
224 schema:givenName Elena A
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144651257.72
226 rdf:type schema:Person
227 sg:person.01254663627.46 schema:affiliation grid-institutes:grid.4709.a
228 schema:familyName Gibson
229 schema:givenName Toby J
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254663627.46
231 rdf:type schema:Person
232 sg:person.01337730763.73 schema:affiliation grid-institutes:grid.4709.a
233 schema:familyName Budd
234 schema:givenName Aidan
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337730763.73
236 rdf:type schema:Person
237 sg:person.0614755451.83 schema:affiliation grid-institutes:grid.4709.a
238 schema:familyName Blandin
239 schema:givenName Stephanie
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614755451.83
241 rdf:type schema:Person
242 sg:pub.10.1007/bf00388657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050975794
243 https://doi.org/10.1007/bf00388657
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
246 https://doi.org/10.1038/35057062
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/35082058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052379739
249 https://doi.org/10.1038/35082058
250 rdf:type schema:CreativeWork
251 grid-institutes:grid.465534.5 schema:alternateName UPR 9022 du CNRS, IBMC, rue René Descartes, F-67087, Strasbourg CEDEX, France
252 schema:name UPR 9022 du CNRS, IBMC, rue René Descartes, F-67087, Strasbourg CEDEX, France
253 rdf:type schema:Organization
254 grid-institutes:grid.4709.a schema:alternateName European Molecular Biology Laboratory, 69012, Heidelberg, Germany
255 schema:name European Molecular Biology Laboratory, 69012, Heidelberg, Germany
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...