A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-04-16

AUTHORS

L Aravind, Lakshminarayan M Iyer, Detlef D Leipe, Eugene V Koonin

ABSTRACT

BackgroundRecent sequence-structure studies on P-loop-fold NTPases have substantially advanced the existing understanding of their evolution and functional diversity. These studies provide a framework for characterization of novel lineages within this fold and prediction of their functional properties.ResultsUsing sequence profile searches and homology-based structure prediction, we have identified a previously uncharacterized family of P-loop NTPases, which includes the neuronal membrane protein and receptor tyrosine kinase substrate Kidins220/ARMS, which is conserved in animals, the F-plasmid PifA protein involved in phage T7 exclusion, and several uncharacterized bacterial proteins. We refer to these (predicted) NTPases as the KAP family, after Kidins220/ARMS and PifA. The KAP family NTPases are sporadically distributed across a wide phylogenetic range in bacteria but among the eukaryotes are represented only in animals. Many of the prokaryotic KAP NTPases are encoded in plasmids and tend to undergo disruption to form pseudogenes. A unique feature of all eukaryotic and certain bacterial KAP NTPases is the presence of two or four transmembrane helices inserted into the P-loop NTPase domain. These transmembrane helices anchor KAP NTPases in the membrane such that the P-loop domain is located on the intracellular side. We show that the KAP family belongs to the same major division of the P-loop NTPase fold with the AAA+, ABC, RecA-like, VirD4-like, PilT-like, and AP/NACHT-like NTPase classes. In addition to the KAP family, we identified another small family of predicted bacterial NTPases, with two transmembrane helices inserted into the P-loop domain. This family is not specifically related to the KAP NTPases, suggesting independent acquisition of the transmembrane helices.ConclusionsWe predict that KAP family NTPases function principally in the NTP-dependent dynamics of protein complexes, especially those associated with the intracellular surface of cell membranes. Animal KAP NTPases, including Kidins220/ARMS, are likely to function as NTP-dependent regulators of the assembly of membrane-associated signaling complexes involved in neurite growth and development. One possible function of the prokaryotic KAP NTPases might be in the exclusion of selfish replicons, such as viruses, from the host cells. Phylogenetic analysis and phyletic patterns suggest that the common ancestor of the animals acquired a KAP NTPase via lateral transfer from bacteria. However, an earlier transfer into eukaryotes followed by multiple losses in several eukaryotic lineages cannot be ruled out. More... »

PAGES

r30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30

DOI

http://dx.doi.org/10.1186/gb-2004-5-5-r30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029322874

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15128444


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine Triphosphatases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalytic Domain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insect Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multigene Family", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis, Insertional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleoside-Triphosphatase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zebrafish Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aravind", 
        "givenName": "L", 
        "id": "sg:person.01106662166.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106662166.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iyer", 
        "givenName": "Lakshminarayan M", 
        "id": "sg:person.012162224357.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162224357.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leipe", 
        "givenName": "Detlef D", 
        "id": "sg:person.01145364733.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145364733.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koonin", 
        "givenName": "Eugene V", 
        "id": "sg:person.01017015051.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2002-3-2-reviews3003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034094865", 
          "https://doi.org/10.1186/gb-2002-3-2-reviews3003"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-04-16", 
    "datePublishedReg": "2004-04-16", 
    "description": "BackgroundRecent sequence-structure studies on P-loop-fold NTPases have substantially advanced the existing understanding of their evolution and functional diversity. These studies provide a framework for characterization of novel lineages within this fold and prediction of their functional properties.ResultsUsing sequence profile searches and homology-based structure prediction, we have identified a previously uncharacterized family of P-loop NTPases, which includes the neuronal membrane protein and receptor tyrosine kinase substrate Kidins220/ARMS, which is conserved in animals, the F-plasmid PifA protein involved in phage T7 exclusion, and several uncharacterized bacterial proteins. We refer to these (predicted) NTPases as the KAP family, after Kidins220/ARMS and PifA. The KAP family NTPases are sporadically distributed across a wide phylogenetic range in bacteria but among the eukaryotes are represented only in animals. Many of the prokaryotic KAP NTPases are encoded in plasmids and tend to undergo disruption to form pseudogenes. A unique feature of all eukaryotic and certain bacterial KAP NTPases is the presence of two or four transmembrane helices inserted into the P-loop NTPase domain. These transmembrane helices anchor KAP NTPases in the membrane such that the P-loop domain is located on the intracellular side. We show that the KAP family belongs to the same major division of the P-loop NTPase fold with the AAA+, ABC, RecA-like, VirD4-like, PilT-like, and AP/NACHT-like NTPase classes. In addition to the KAP family, we identified another small family of predicted bacterial NTPases, with two transmembrane helices inserted into the P-loop domain. This family is not specifically related to the KAP NTPases, suggesting independent acquisition of the transmembrane helices.ConclusionsWe predict that KAP family NTPases function principally in the NTP-dependent dynamics of protein complexes, especially those associated with the intracellular surface of cell membranes. Animal KAP NTPases, including Kidins220/ARMS, are likely to function as NTP-dependent regulators of the assembly of membrane-associated signaling complexes involved in neurite growth and development. One possible function of the prokaryotic KAP NTPases might be in the exclusion of selfish replicons, such as viruses, from the host cells. Phylogenetic analysis and phyletic patterns suggest that the common ancestor of the animals acquired a KAP NTPase via lateral transfer from bacteria. However, an earlier transfer into eukaryotes followed by multiple losses in several eukaryotic lineages cannot be ruled out.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/gb-2004-5-5-r30", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2726029", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2720300", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2720255", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "Kidins220/ARMS", 
      "P-loop NTPases", 
      "P-loop domain", 
      "transmembrane helices", 
      "KAP families", 
      "NTPase domain", 
      "P-loop NTPase domain", 
      "uncharacterized bacterial proteins", 
      "sequence profile searches", 
      "P-loop NTPase", 
      "wide phylogenetic range", 
      "neuronal membrane proteins", 
      "homology-based structure prediction", 
      "eukaryotic lineages", 
      "uncharacterized family", 
      "phylogenetic range", 
      "phyletic patterns", 
      "phyletic distribution", 
      "novel lineage", 
      "functional diversity", 
      "protein complexes", 
      "transmembrane segments", 
      "common ancestor", 
      "phylogenetic analysis", 
      "membrane proteins", 
      "NTPases", 
      "bacterial proteins", 
      "profile searches", 
      "lateral transfer", 
      "host cells", 
      "possible functions", 
      "independent acquisition", 
      "intracellular side", 
      "intracellular surface", 
      "cell membrane", 
      "novel family", 
      "structure prediction", 
      "eukaryotes", 
      "small family", 
      "protein", 
      "lineages", 
      "NTPase", 
      "helix", 
      "neurite growth", 
      "bacteria", 
      "family", 
      "major divisions", 
      "multiple losses", 
      "functional properties", 
      "domain", 
      "membrane", 
      "VirD4", 
      "pseudogenes", 
      "RecA", 
      "PilT", 
      "ancestor", 
      "complexes", 
      "animals", 
      "regulator", 
      "diversity", 
      "plasmid", 
      "replicon", 
      "unique features", 
      "assembly", 
      "cells", 
      "ARMS", 
      "division", 
      "disruption", 
      "folds", 
      "growth", 
      "evolution", 
      "virus", 
      "characterization", 
      "exclusion", 
      "function", 
      "patterns", 
      "understanding", 
      "transfer", 
      "dynamics", 
      "loss", 
      "development", 
      "segments", 
      "presence", 
      "study", 
      "addition", 
      "ABC", 
      "analysis", 
      "distribution", 
      "acquisition", 
      "prediction", 
      "class", 
      "range", 
      "features", 
      "ConclusionsWe", 
      "search", 
      "surface", 
      "side", 
      "early transfer", 
      "properties", 
      "framework"
    ], 
    "name": "A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain", 
    "pagination": "r30", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029322874"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2004-5-5-r30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15128444"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2004-5-5-r30", 
      "https://app.dimensions.ai/details/publication/pub.1029322874"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_387.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/gb-2004-5-5-r30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      22 PREDICATES      146 URIs      137 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2004-5-5-r30 schema:about N0b84588aa03e4e2fb77df270c08b0e54
2 N17bd13b9a1c84b1593e7d6cdc74ecb4b
3 N203f516b659943ceb7ee6b23d6b6cb70
4 N204c81a85514465f845e8e6b017d7fc7
5 N2af106f4e3e8479cb7711207c1e122f5
6 N394efa60ba8f45ca8575dea30565d60e
7 N4c888904d17d4f8983955db07f25efc0
8 N568803931fae4e0fa743db78f95e9ebc
9 N5ad35f2f75bc45d4b16e7f1052d81f32
10 N67f2af4d9cc5479f821da0cbe265db54
11 N702f455d36b24202bc188a4416d197e4
12 N81ff888202274eeabd4fc90003bd4d8f
13 N8f0e255b4af84a66a236543cd3894cef
14 N938de732b78e495e866bc86e3654d678
15 N96d5a2450d4d463bb8a69a180c5e9f81
16 Na48b967b550d41bc9bc62a3778aceeb9
17 Nb371a72a70cb4b169009c5325b7e632d
18 Nc81a66354cd94dbf96ef73e0449156f3
19 Ncf872265c6ff43ab86570ed563a17ebc
20 anzsrc-for:06
21 anzsrc-for:0601
22 schema:author N4874b2f034c74fe6989d9d764c550ab3
23 schema:citation sg:pub.10.1186/gb-2002-3-2-reviews3003
24 schema:datePublished 2004-04-16
25 schema:datePublishedReg 2004-04-16
26 schema:description BackgroundRecent sequence-structure studies on P-loop-fold NTPases have substantially advanced the existing understanding of their evolution and functional diversity. These studies provide a framework for characterization of novel lineages within this fold and prediction of their functional properties.ResultsUsing sequence profile searches and homology-based structure prediction, we have identified a previously uncharacterized family of P-loop NTPases, which includes the neuronal membrane protein and receptor tyrosine kinase substrate Kidins220/ARMS, which is conserved in animals, the F-plasmid PifA protein involved in phage T7 exclusion, and several uncharacterized bacterial proteins. We refer to these (predicted) NTPases as the KAP family, after Kidins220/ARMS and PifA. The KAP family NTPases are sporadically distributed across a wide phylogenetic range in bacteria but among the eukaryotes are represented only in animals. Many of the prokaryotic KAP NTPases are encoded in plasmids and tend to undergo disruption to form pseudogenes. A unique feature of all eukaryotic and certain bacterial KAP NTPases is the presence of two or four transmembrane helices inserted into the P-loop NTPase domain. These transmembrane helices anchor KAP NTPases in the membrane such that the P-loop domain is located on the intracellular side. We show that the KAP family belongs to the same major division of the P-loop NTPase fold with the AAA+, ABC, RecA-like, VirD4-like, PilT-like, and AP/NACHT-like NTPase classes. In addition to the KAP family, we identified another small family of predicted bacterial NTPases, with two transmembrane helices inserted into the P-loop domain. This family is not specifically related to the KAP NTPases, suggesting independent acquisition of the transmembrane helices.ConclusionsWe predict that KAP family NTPases function principally in the NTP-dependent dynamics of protein complexes, especially those associated with the intracellular surface of cell membranes. Animal KAP NTPases, including Kidins220/ARMS, are likely to function as NTP-dependent regulators of the assembly of membrane-associated signaling complexes involved in neurite growth and development. One possible function of the prokaryotic KAP NTPases might be in the exclusion of selfish replicons, such as viruses, from the host cells. Phylogenetic analysis and phyletic patterns suggest that the common ancestor of the animals acquired a KAP NTPase via lateral transfer from bacteria. However, an earlier transfer into eukaryotes followed by multiple losses in several eukaryotic lineages cannot be ruled out.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N973ce877e4774f17b2053ecd825e6270
31 Nbe49ad9ab98e4c6ca4dd9cd4048504a1
32 sg:journal.1023439
33 schema:keywords ABC
34 ARMS
35 ConclusionsWe
36 KAP families
37 Kidins220/ARMS
38 NTPase
39 NTPase domain
40 NTPases
41 P-loop NTPase
42 P-loop NTPase domain
43 P-loop NTPases
44 P-loop domain
45 PilT
46 RecA
47 VirD4
48 acquisition
49 addition
50 analysis
51 ancestor
52 animals
53 assembly
54 bacteria
55 bacterial proteins
56 cell membrane
57 cells
58 characterization
59 class
60 common ancestor
61 complexes
62 development
63 disruption
64 distribution
65 diversity
66 division
67 domain
68 dynamics
69 early transfer
70 eukaryotes
71 eukaryotic lineages
72 evolution
73 exclusion
74 family
75 features
76 folds
77 framework
78 function
79 functional diversity
80 functional properties
81 growth
82 helix
83 homology-based structure prediction
84 host cells
85 independent acquisition
86 intracellular side
87 intracellular surface
88 lateral transfer
89 lineages
90 loss
91 major divisions
92 membrane
93 membrane proteins
94 multiple losses
95 neurite growth
96 neuronal membrane proteins
97 novel family
98 novel lineage
99 patterns
100 phyletic distribution
101 phyletic patterns
102 phylogenetic analysis
103 phylogenetic range
104 plasmid
105 possible functions
106 prediction
107 presence
108 profile searches
109 properties
110 protein
111 protein complexes
112 pseudogenes
113 range
114 regulator
115 replicon
116 search
117 segments
118 sequence profile searches
119 side
120 small family
121 structure prediction
122 study
123 surface
124 transfer
125 transmembrane helices
126 transmembrane segments
127 uncharacterized bacterial proteins
128 uncharacterized family
129 understanding
130 unique features
131 virus
132 wide phylogenetic range
133 schema:name A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain
134 schema:pagination r30
135 schema:productId N683c28e398714889b29a4fe38049333a
136 Na69eb872dc3648ec8fa75975db146676
137 Nb952b1ca8c5343269f6cce907727ec87
138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029322874
139 https://doi.org/10.1186/gb-2004-5-5-r30
140 schema:sdDatePublished 2022-05-20T07:22
141 schema:sdLicense https://scigraph.springernature.com/explorer/license/
142 schema:sdPublisher N836eeedf30034285821e7c1937b15507
143 schema:url https://doi.org/10.1186/gb-2004-5-5-r30
144 sgo:license sg:explorer/license/
145 sgo:sdDataset articles
146 rdf:type schema:ScholarlyArticle
147 N0b84588aa03e4e2fb77df270c08b0e54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Nucleoside-Triphosphatase
149 rdf:type schema:DefinedTerm
150 N17bd13b9a1c84b1593e7d6cdc74ecb4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Catalytic Domain
152 rdf:type schema:DefinedTerm
153 N203f516b659943ceb7ee6b23d6b6cb70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Sequence Homology, Amino Acid
155 rdf:type schema:DefinedTerm
156 N204c81a85514465f845e8e6b017d7fc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Animals
158 rdf:type schema:DefinedTerm
159 N2af106f4e3e8479cb7711207c1e122f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Multigene Family
161 rdf:type schema:DefinedTerm
162 N394efa60ba8f45ca8575dea30565d60e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Evolution, Molecular
164 rdf:type schema:DefinedTerm
165 N396116de0610401999695514c1d1e27e rdf:first sg:person.01145364733.30
166 rdf:rest N9334e734e90b4145a67368eccc7f3301
167 N4874b2f034c74fe6989d9d764c550ab3 rdf:first sg:person.01106662166.38
168 rdf:rest Nf95fdd28a4b44a7faae8ada2095386ad
169 N4c888904d17d4f8983955db07f25efc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Databases, Protein
171 rdf:type schema:DefinedTerm
172 N568803931fae4e0fa743db78f95e9ebc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Membrane Proteins
174 rdf:type schema:DefinedTerm
175 N5ad35f2f75bc45d4b16e7f1052d81f32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Caenorhabditis elegans Proteins
177 rdf:type schema:DefinedTerm
178 N67f2af4d9cc5479f821da0cbe265db54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Zebrafish Proteins
180 rdf:type schema:DefinedTerm
181 N683c28e398714889b29a4fe38049333a schema:name dimensions_id
182 schema:value pub.1029322874
183 rdf:type schema:PropertyValue
184 N702f455d36b24202bc188a4416d197e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Mutagenesis, Insertional
186 rdf:type schema:DefinedTerm
187 N81ff888202274eeabd4fc90003bd4d8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Protein Structure, Tertiary
189 rdf:type schema:DefinedTerm
190 N836eeedf30034285821e7c1937b15507 schema:name Springer Nature - SN SciGraph project
191 rdf:type schema:Organization
192 N8f0e255b4af84a66a236543cd3894cef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Predictive Value of Tests
194 rdf:type schema:DefinedTerm
195 N9334e734e90b4145a67368eccc7f3301 rdf:first sg:person.01017015051.78
196 rdf:rest rdf:nil
197 N938de732b78e495e866bc86e3654d678 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Phylogeny
199 rdf:type schema:DefinedTerm
200 N96d5a2450d4d463bb8a69a180c5e9f81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Adenosine Triphosphatases
202 rdf:type schema:DefinedTerm
203 N973ce877e4774f17b2053ecd825e6270 schema:volumeNumber 5
204 rdf:type schema:PublicationVolume
205 Na48b967b550d41bc9bc62a3778aceeb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Drosophila Proteins
207 rdf:type schema:DefinedTerm
208 Na69eb872dc3648ec8fa75975db146676 schema:name doi
209 schema:value 10.1186/gb-2004-5-5-r30
210 rdf:type schema:PropertyValue
211 Nb371a72a70cb4b169009c5325b7e632d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Insect Proteins
213 rdf:type schema:DefinedTerm
214 Nb952b1ca8c5343269f6cce907727ec87 schema:name pubmed_id
215 schema:value 15128444
216 rdf:type schema:PropertyValue
217 Nbe49ad9ab98e4c6ca4dd9cd4048504a1 schema:issueNumber 5
218 rdf:type schema:PublicationIssue
219 Nc81a66354cd94dbf96ef73e0449156f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
220 schema:name Bacterial Proteins
221 rdf:type schema:DefinedTerm
222 Ncf872265c6ff43ab86570ed563a17ebc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Peptides
224 rdf:type schema:DefinedTerm
225 Nf95fdd28a4b44a7faae8ada2095386ad rdf:first sg:person.012162224357.20
226 rdf:rest N396116de0610401999695514c1d1e27e
227 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
228 schema:name Biological Sciences
229 rdf:type schema:DefinedTerm
230 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
231 schema:name Biochemistry and Cell Biology
232 rdf:type schema:DefinedTerm
233 sg:grant.2720255 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2004-5-5-r30
234 rdf:type schema:MonetaryGrant
235 sg:grant.2720300 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2004-5-5-r30
236 rdf:type schema:MonetaryGrant
237 sg:grant.2726029 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2004-5-5-r30
238 rdf:type schema:MonetaryGrant
239 sg:journal.1023439 schema:issn 1465-6906
240 1474-760X
241 schema:name Genome Biology
242 schema:publisher Springer Nature
243 rdf:type schema:Periodical
244 sg:person.01017015051.78 schema:affiliation grid-institutes:grid.419234.9
245 schema:familyName Koonin
246 schema:givenName Eugene V
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78
248 rdf:type schema:Person
249 sg:person.01106662166.38 schema:affiliation grid-institutes:grid.419234.9
250 schema:familyName Aravind
251 schema:givenName L
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106662166.38
253 rdf:type schema:Person
254 sg:person.01145364733.30 schema:affiliation grid-institutes:grid.419234.9
255 schema:familyName Leipe
256 schema:givenName Detlef D
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145364733.30
258 rdf:type schema:Person
259 sg:person.012162224357.20 schema:affiliation grid-institutes:grid.419234.9
260 schema:familyName Iyer
261 schema:givenName Lakshminarayan M
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162224357.20
263 rdf:type schema:Person
264 sg:pub.10.1186/gb-2002-3-2-reviews3003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034094865
265 https://doi.org/10.1186/gb-2002-3-2-reviews3003
266 rdf:type schema:CreativeWork
267 grid-institutes:grid.419234.9 schema:alternateName National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA
268 schema:name National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...