A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-04-16

AUTHORS

L Aravind, Lakshminarayan M Iyer, Detlef D Leipe, Eugene V Koonin

ABSTRACT

BACKGROUND: Recent sequence-structure studies on P-loop-fold NTPases have substantially advanced the existing understanding of their evolution and functional diversity. These studies provide a framework for characterization of novel lineages within this fold and prediction of their functional properties. RESULTS: Using sequence profile searches and homology-based structure prediction, we have identified a previously uncharacterized family of P-loop NTPases, which includes the neuronal membrane protein and receptor tyrosine kinase substrate Kidins220/ARMS, which is conserved in animals, the F-plasmid PifA protein involved in phage T7 exclusion, and several uncharacterized bacterial proteins. We refer to these (predicted) NTPases as the KAP family, after Kidins220/ARMS and PifA. The KAP family NTPases are sporadically distributed across a wide phylogenetic range in bacteria but among the eukaryotes are represented only in animals. Many of the prokaryotic KAP NTPases are encoded in plasmids and tend to undergo disruption to form pseudogenes. A unique feature of all eukaryotic and certain bacterial KAP NTPases is the presence of two or four transmembrane helices inserted into the P-loop NTPase domain. These transmembrane helices anchor KAP NTPases in the membrane such that the P-loop domain is located on the intracellular side. We show that the KAP family belongs to the same major division of the P-loop NTPase fold with the AAA+, ABC, RecA-like, VirD4-like, PilT-like, and AP/NACHT-like NTPase classes. In addition to the KAP family, we identified another small family of predicted bacterial NTPases, with two transmembrane helices inserted into the P-loop domain. This family is not specifically related to the KAP NTPases, suggesting independent acquisition of the transmembrane helices. CONCLUSIONS: We predict that KAP family NTPases function principally in the NTP-dependent dynamics of protein complexes, especially those associated with the intracellular surface of cell membranes. Animal KAP NTPases, including Kidins220/ARMS, are likely to function as NTP-dependent regulators of the assembly of membrane-associated signaling complexes involved in neurite growth and development. One possible function of the prokaryotic KAP NTPases might be in the exclusion of selfish replicons, such as viruses, from the host cells. Phylogenetic analysis and phyletic patterns suggest that the common ancestor of the animals acquired a KAP NTPase via lateral transfer from bacteria. However, an earlier transfer into eukaryotes followed by multiple losses in several eukaryotic lineages cannot be ruled out. More... »

PAGES

r30-r30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30

DOI

http://dx.doi.org/10.1186/gb-2004-5-5-r30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029322874

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15128444


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine Triphosphatases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalytic Domain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insect Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multigene Family", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis, Insertional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleoside-Triphosphatase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zebrafish Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aravind", 
        "givenName": "L", 
        "id": "sg:person.01106662166.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106662166.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iyer", 
        "givenName": "Lakshminarayan M", 
        "id": "sg:person.012162224357.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162224357.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leipe", 
        "givenName": "Detlef D", 
        "id": "sg:person.01145364733.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145364733.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koonin", 
        "givenName": "Eugene V", 
        "id": "sg:person.01017015051.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2002-3-2-reviews3003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034094865", 
          "https://doi.org/10.1186/gb-2002-3-2-reviews3003"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-04-16", 
    "datePublishedReg": "2004-04-16", 
    "description": "BACKGROUND: Recent sequence-structure studies on P-loop-fold NTPases have substantially advanced the existing understanding of their evolution and functional diversity. These studies provide a framework for characterization of novel lineages within this fold and prediction of their functional properties.\nRESULTS: Using sequence profile searches and homology-based structure prediction, we have identified a previously uncharacterized family of P-loop NTPases, which includes the neuronal membrane protein and receptor tyrosine kinase substrate Kidins220/ARMS, which is conserved in animals, the F-plasmid PifA protein involved in phage T7 exclusion, and several uncharacterized bacterial proteins. We refer to these (predicted) NTPases as the KAP family, after Kidins220/ARMS and PifA. The KAP family NTPases are sporadically distributed across a wide phylogenetic range in bacteria but among the eukaryotes are represented only in animals. Many of the prokaryotic KAP NTPases are encoded in plasmids and tend to undergo disruption to form pseudogenes. A unique feature of all eukaryotic and certain bacterial KAP NTPases is the presence of two or four transmembrane helices inserted into the P-loop NTPase domain. These transmembrane helices anchor KAP NTPases in the membrane such that the P-loop domain is located on the intracellular side. We show that the KAP family belongs to the same major division of the P-loop NTPase fold with the AAA+, ABC, RecA-like, VirD4-like, PilT-like, and AP/NACHT-like NTPase classes. In addition to the KAP family, we identified another small family of predicted bacterial NTPases, with two transmembrane helices inserted into the P-loop domain. This family is not specifically related to the KAP NTPases, suggesting independent acquisition of the transmembrane helices.\nCONCLUSIONS: We predict that KAP family NTPases function principally in the NTP-dependent dynamics of protein complexes, especially those associated with the intracellular surface of cell membranes. Animal KAP NTPases, including Kidins220/ARMS, are likely to function as NTP-dependent regulators of the assembly of membrane-associated signaling complexes involved in neurite growth and development. One possible function of the prokaryotic KAP NTPases might be in the exclusion of selfish replicons, such as viruses, from the host cells. Phylogenetic analysis and phyletic patterns suggest that the common ancestor of the animals acquired a KAP NTPase via lateral transfer from bacteria. However, an earlier transfer into eukaryotes followed by multiple losses in several eukaryotic lineages cannot be ruled out.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/gb-2004-5-5-r30", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2720300", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2720255", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2726029", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "Kidins220/ARMS", 
      "transmembrane helices", 
      "KAP families", 
      "loop NTPases", 
      "NTPase domain", 
      "loop domain", 
      "uncharacterized bacterial proteins", 
      "sequence profile searches", 
      "wide phylogenetic range", 
      "loop NTPase domain", 
      "neuronal membrane proteins", 
      "homology-based structure prediction", 
      "eukaryotic lineages", 
      "loop NTPase", 
      "uncharacterized family", 
      "phylogenetic range", 
      "phyletic patterns", 
      "phyletic distribution", 
      "novel lineage", 
      "functional diversity", 
      "protein complexes", 
      "transmembrane segments", 
      "common ancestor", 
      "phylogenetic analysis", 
      "NTPases", 
      "membrane proteins", 
      "bacterial proteins", 
      "profile searches", 
      "lateral transfer", 
      "host cells", 
      "possible functions", 
      "independent acquisition", 
      "novel family", 
      "structure prediction", 
      "intracellular side", 
      "eukaryotes", 
      "cell membrane", 
      "intracellular surface", 
      "small family", 
      "protein", 
      "lineages", 
      "helix", 
      "NTPase", 
      "neurite growth", 
      "bacteria", 
      "major divisions", 
      "family", 
      "functional properties", 
      "domain", 
      "multiple losses", 
      "membrane", 
      "VirD4", 
      "pseudogenes", 
      "RecA", 
      "PilT", 
      "ancestor", 
      "complexes", 
      "animals", 
      "regulator", 
      "diversity", 
      "plasmid", 
      "replicon", 
      "unique features", 
      "assembly", 
      "cells", 
      "division", 
      "ARMS", 
      "disruption", 
      "growth", 
      "folds", 
      "evolution", 
      "virus", 
      "characterization", 
      "exclusion", 
      "function", 
      "patterns", 
      "understanding", 
      "transfer", 
      "dynamics", 
      "segments", 
      "development", 
      "loss", 
      "presence", 
      "study", 
      "addition", 
      "analysis", 
      "ABC", 
      "distribution", 
      "acquisition", 
      "prediction", 
      "class", 
      "range", 
      "features", 
      "search", 
      "surface", 
      "side", 
      "early transfer", 
      "properties", 
      "framework", 
      "Recent sequence-structure studies", 
      "sequence-structure studies", 
      "loop-fold NTPases", 
      "receptor tyrosine kinase substrate Kidins220/ARMS", 
      "tyrosine kinase substrate Kidins220/ARMS", 
      "kinase substrate Kidins220/ARMS", 
      "substrate Kidins220/ARMS", 
      "plasmid PifA protein", 
      "PifA protein", 
      "phage T7 exclusion", 
      "T7 exclusion", 
      "PifA.", 
      "KAP family NTPases", 
      "family NTPases", 
      "prokaryotic KAP NTPases", 
      "KAP NTPases", 
      "certain bacterial KAP NTPases", 
      "bacterial KAP NTPases", 
      "transmembrane helices anchor KAP NTPases", 
      "helices anchor KAP NTPases", 
      "anchor KAP NTPases", 
      "same major division", 
      "AP/NACHT-like NTPase classes", 
      "NACHT-like NTPase classes", 
      "NTPase classes", 
      "bacterial NTPases", 
      "NTP-dependent dynamics", 
      "Animal KAP NTPases", 
      "NTP-dependent regulators", 
      "selfish replicons", 
      "KAP NTPase", 
      "unusual phyletic distribution"
    ], 
    "name": "A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain", 
    "pagination": "r30-r30", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029322874"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2004-5-5-r30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15128444"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2004-5-5-r30", 
      "https://app.dimensions.ai/details/publication/pub.1029322874"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_389.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/gb-2004-5-5-r30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2004-5-5-r30'


 

This table displays all metadata directly associated to this object as RDF triples.

300 TRIPLES      22 PREDICATES      177 URIs      168 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2004-5-5-r30 schema:about N0367e104cdcc4a409e5f724b315fe498
2 N261aa1c8cb4c40458de011a37b1e1609
3 N2b1d5020a5fd419b98b451750122ba1a
4 N54ee8140638f4abf83f148de74ff632a
5 N644092ef775547f8a0319c9d20aa19f7
6 N7302cad588dc46fc9e66d89462bfa4f4
7 N7733970584b84deb985e7df281bad207
8 N8c39fd48d75f412e9d79d255a8c896cb
9 N8f883fa575d14842a83f4c947936b803
10 N9811ec2dbd1343b185debcffe6a3e896
11 N98d88b0f5eae447daa47df0e72407ca9
12 N9a8045a5780a421d833c98d98dd7b329
13 Nb8b6467ebf5d433c871bd4dea4f36600
14 Nbf91d6a607bb4bc3aaae3816970f8cf0
15 Ncbb88b46299f481a86529f4f8abbf8b5
16 Ndb5cbc3caf404b09b40b1faabf6af1ff
17 Ne4ab252bbbf44952878ef6836b996a36
18 Ne939b55f77c644e3a78cd5a40b07a17b
19 Nef659f4e52cb4c5eb36e3eb8b4f3d27a
20 anzsrc-for:06
21 anzsrc-for:0601
22 schema:author N8474f28f341c45ec82eab592bde4faab
23 schema:citation sg:pub.10.1186/gb-2002-3-2-reviews3003
24 schema:datePublished 2004-04-16
25 schema:datePublishedReg 2004-04-16
26 schema:description BACKGROUND: Recent sequence-structure studies on P-loop-fold NTPases have substantially advanced the existing understanding of their evolution and functional diversity. These studies provide a framework for characterization of novel lineages within this fold and prediction of their functional properties. RESULTS: Using sequence profile searches and homology-based structure prediction, we have identified a previously uncharacterized family of P-loop NTPases, which includes the neuronal membrane protein and receptor tyrosine kinase substrate Kidins220/ARMS, which is conserved in animals, the F-plasmid PifA protein involved in phage T7 exclusion, and several uncharacterized bacterial proteins. We refer to these (predicted) NTPases as the KAP family, after Kidins220/ARMS and PifA. The KAP family NTPases are sporadically distributed across a wide phylogenetic range in bacteria but among the eukaryotes are represented only in animals. Many of the prokaryotic KAP NTPases are encoded in plasmids and tend to undergo disruption to form pseudogenes. A unique feature of all eukaryotic and certain bacterial KAP NTPases is the presence of two or four transmembrane helices inserted into the P-loop NTPase domain. These transmembrane helices anchor KAP NTPases in the membrane such that the P-loop domain is located on the intracellular side. We show that the KAP family belongs to the same major division of the P-loop NTPase fold with the AAA+, ABC, RecA-like, VirD4-like, PilT-like, and AP/NACHT-like NTPase classes. In addition to the KAP family, we identified another small family of predicted bacterial NTPases, with two transmembrane helices inserted into the P-loop domain. This family is not specifically related to the KAP NTPases, suggesting independent acquisition of the transmembrane helices. CONCLUSIONS: We predict that KAP family NTPases function principally in the NTP-dependent dynamics of protein complexes, especially those associated with the intracellular surface of cell membranes. Animal KAP NTPases, including Kidins220/ARMS, are likely to function as NTP-dependent regulators of the assembly of membrane-associated signaling complexes involved in neurite growth and development. One possible function of the prokaryotic KAP NTPases might be in the exclusion of selfish replicons, such as viruses, from the host cells. Phylogenetic analysis and phyletic patterns suggest that the common ancestor of the animals acquired a KAP NTPase via lateral transfer from bacteria. However, an earlier transfer into eukaryotes followed by multiple losses in several eukaryotic lineages cannot be ruled out.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N71c99cde8677402e9a9e4691ef7ec6f7
31 N81a0a1871b51468db11c49fce07b9ce7
32 sg:journal.1023439
33 schema:keywords ABC
34 AP/NACHT-like NTPase classes
35 ARMS
36 Animal KAP NTPases
37 KAP NTPase
38 KAP NTPases
39 KAP families
40 KAP family NTPases
41 Kidins220/ARMS
42 NACHT-like NTPase classes
43 NTP-dependent dynamics
44 NTP-dependent regulators
45 NTPase
46 NTPase classes
47 NTPase domain
48 NTPases
49 PifA protein
50 PifA.
51 PilT
52 RecA
53 Recent sequence-structure studies
54 T7 exclusion
55 VirD4
56 acquisition
57 addition
58 analysis
59 ancestor
60 anchor KAP NTPases
61 animals
62 assembly
63 bacteria
64 bacterial KAP NTPases
65 bacterial NTPases
66 bacterial proteins
67 cell membrane
68 cells
69 certain bacterial KAP NTPases
70 characterization
71 class
72 common ancestor
73 complexes
74 development
75 disruption
76 distribution
77 diversity
78 division
79 domain
80 dynamics
81 early transfer
82 eukaryotes
83 eukaryotic lineages
84 evolution
85 exclusion
86 family
87 family NTPases
88 features
89 folds
90 framework
91 function
92 functional diversity
93 functional properties
94 growth
95 helices anchor KAP NTPases
96 helix
97 homology-based structure prediction
98 host cells
99 independent acquisition
100 intracellular side
101 intracellular surface
102 kinase substrate Kidins220/ARMS
103 lateral transfer
104 lineages
105 loop NTPase
106 loop NTPase domain
107 loop NTPases
108 loop domain
109 loop-fold NTPases
110 loss
111 major divisions
112 membrane
113 membrane proteins
114 multiple losses
115 neurite growth
116 neuronal membrane proteins
117 novel family
118 novel lineage
119 patterns
120 phage T7 exclusion
121 phyletic distribution
122 phyletic patterns
123 phylogenetic analysis
124 phylogenetic range
125 plasmid
126 plasmid PifA protein
127 possible functions
128 prediction
129 presence
130 profile searches
131 prokaryotic KAP NTPases
132 properties
133 protein
134 protein complexes
135 pseudogenes
136 range
137 receptor tyrosine kinase substrate Kidins220/ARMS
138 regulator
139 replicon
140 same major division
141 search
142 segments
143 selfish replicons
144 sequence profile searches
145 sequence-structure studies
146 side
147 small family
148 structure prediction
149 study
150 substrate Kidins220/ARMS
151 surface
152 transfer
153 transmembrane helices
154 transmembrane helices anchor KAP NTPases
155 transmembrane segments
156 tyrosine kinase substrate Kidins220/ARMS
157 uncharacterized bacterial proteins
158 uncharacterized family
159 understanding
160 unique features
161 unusual phyletic distribution
162 virus
163 wide phylogenetic range
164 schema:name A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain
165 schema:pagination r30-r30
166 schema:productId N652af578a50d4523ade3cb4f7c2129db
167 N959ec20f660446a385b89573d1e0fae6
168 Ndb7595a205a542b4bf2088b95a534131
169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029322874
170 https://doi.org/10.1186/gb-2004-5-5-r30
171 schema:sdDatePublished 2022-01-01T18:14
172 schema:sdLicense https://scigraph.springernature.com/explorer/license/
173 schema:sdPublisher Naf55d7c0543341c2b1f773864d8546c7
174 schema:url https://doi.org/10.1186/gb-2004-5-5-r30
175 sgo:license sg:explorer/license/
176 sgo:sdDataset articles
177 rdf:type schema:ScholarlyArticle
178 N01a6bb0ae9d14876a163eb2ad1d2a723 rdf:first sg:person.01145364733.30
179 rdf:rest N9fe1c2b67fcb4fe8870f32aed7b433e6
180 N0367e104cdcc4a409e5f724b315fe498 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Catalytic Domain
182 rdf:type schema:DefinedTerm
183 N261aa1c8cb4c40458de011a37b1e1609 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Sequence Homology, Amino Acid
185 rdf:type schema:DefinedTerm
186 N2b1d5020a5fd419b98b451750122ba1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Databases, Protein
188 rdf:type schema:DefinedTerm
189 N54ee8140638f4abf83f148de74ff632a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Phylogeny
191 rdf:type schema:DefinedTerm
192 N6294293fd082448ba933c39595fa09b7 rdf:first sg:person.012162224357.20
193 rdf:rest N01a6bb0ae9d14876a163eb2ad1d2a723
194 N644092ef775547f8a0319c9d20aa19f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Mutagenesis, Insertional
196 rdf:type schema:DefinedTerm
197 N652af578a50d4523ade3cb4f7c2129db schema:name pubmed_id
198 schema:value 15128444
199 rdf:type schema:PropertyValue
200 N71c99cde8677402e9a9e4691ef7ec6f7 schema:issueNumber 5
201 rdf:type schema:PublicationIssue
202 N7302cad588dc46fc9e66d89462bfa4f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Insect Proteins
204 rdf:type schema:DefinedTerm
205 N7733970584b84deb985e7df281bad207 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Adenosine Triphosphatases
207 rdf:type schema:DefinedTerm
208 N81a0a1871b51468db11c49fce07b9ce7 schema:volumeNumber 5
209 rdf:type schema:PublicationVolume
210 N8474f28f341c45ec82eab592bde4faab rdf:first sg:person.01106662166.38
211 rdf:rest N6294293fd082448ba933c39595fa09b7
212 N8c39fd48d75f412e9d79d255a8c896cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Multigene Family
214 rdf:type schema:DefinedTerm
215 N8f883fa575d14842a83f4c947936b803 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Zebrafish Proteins
217 rdf:type schema:DefinedTerm
218 N959ec20f660446a385b89573d1e0fae6 schema:name dimensions_id
219 schema:value pub.1029322874
220 rdf:type schema:PropertyValue
221 N9811ec2dbd1343b185debcffe6a3e896 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Bacterial Proteins
223 rdf:type schema:DefinedTerm
224 N98d88b0f5eae447daa47df0e72407ca9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
225 schema:name Protein Structure, Tertiary
226 rdf:type schema:DefinedTerm
227 N9a8045a5780a421d833c98d98dd7b329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
228 schema:name Caenorhabditis elegans Proteins
229 rdf:type schema:DefinedTerm
230 N9fe1c2b67fcb4fe8870f32aed7b433e6 rdf:first sg:person.01017015051.78
231 rdf:rest rdf:nil
232 Naf55d7c0543341c2b1f773864d8546c7 schema:name Springer Nature - SN SciGraph project
233 rdf:type schema:Organization
234 Nb8b6467ebf5d433c871bd4dea4f36600 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
235 schema:name Evolution, Molecular
236 rdf:type schema:DefinedTerm
237 Nbf91d6a607bb4bc3aaae3816970f8cf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
238 schema:name Drosophila Proteins
239 rdf:type schema:DefinedTerm
240 Ncbb88b46299f481a86529f4f8abbf8b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
241 schema:name Peptides
242 rdf:type schema:DefinedTerm
243 Ndb5cbc3caf404b09b40b1faabf6af1ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
244 schema:name Membrane Proteins
245 rdf:type schema:DefinedTerm
246 Ndb7595a205a542b4bf2088b95a534131 schema:name doi
247 schema:value 10.1186/gb-2004-5-5-r30
248 rdf:type schema:PropertyValue
249 Ne4ab252bbbf44952878ef6836b996a36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
250 schema:name Nucleoside-Triphosphatase
251 rdf:type schema:DefinedTerm
252 Ne939b55f77c644e3a78cd5a40b07a17b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
253 schema:name Predictive Value of Tests
254 rdf:type schema:DefinedTerm
255 Nef659f4e52cb4c5eb36e3eb8b4f3d27a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
256 schema:name Animals
257 rdf:type schema:DefinedTerm
258 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
259 schema:name Biological Sciences
260 rdf:type schema:DefinedTerm
261 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
262 schema:name Biochemistry and Cell Biology
263 rdf:type schema:DefinedTerm
264 sg:grant.2720255 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2004-5-5-r30
265 rdf:type schema:MonetaryGrant
266 sg:grant.2720300 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2004-5-5-r30
267 rdf:type schema:MonetaryGrant
268 sg:grant.2726029 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2004-5-5-r30
269 rdf:type schema:MonetaryGrant
270 sg:journal.1023439 schema:issn 1465-6906
271 1474-760X
272 schema:name Genome Biology
273 schema:publisher Springer Nature
274 rdf:type schema:Periodical
275 sg:person.01017015051.78 schema:affiliation grid-institutes:grid.419234.9
276 schema:familyName Koonin
277 schema:givenName Eugene V
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78
279 rdf:type schema:Person
280 sg:person.01106662166.38 schema:affiliation grid-institutes:grid.419234.9
281 schema:familyName Aravind
282 schema:givenName L
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106662166.38
284 rdf:type schema:Person
285 sg:person.01145364733.30 schema:affiliation grid-institutes:grid.419234.9
286 schema:familyName Leipe
287 schema:givenName Detlef D
288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145364733.30
289 rdf:type schema:Person
290 sg:person.012162224357.20 schema:affiliation grid-institutes:grid.419234.9
291 schema:familyName Iyer
292 schema:givenName Lakshminarayan M
293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162224357.20
294 rdf:type schema:Person
295 sg:pub.10.1186/gb-2002-3-2-reviews3003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034094865
296 https://doi.org/10.1186/gb-2002-3-2-reviews3003
297 rdf:type schema:CreativeWork
298 grid-institutes:grid.419234.9 schema:alternateName National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
299 schema:name National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
300 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...