Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-07

AUTHORS

Julien Sylvestre, Stéphane Vialette, Marisol Corral Debrinski, Claude Jacq

ABSTRACT

BACKGROUND: Subcellular messenger RNA localization is important in most eukaryotic cells, even in unicellular organisms like yeast for which this process has been underestimated. Microarrays are rarely used to study subcellular mRNA localization at whole-genome level, but can be adapted to that purpose. This work focuses on studying the repartition of yeast nuclear transcripts encoding mitochondrial proteins between free cytosolic polysomes and polysomes bound to the mitochondrial outer membrane. RESULTS: Combining biochemical fractionations with oligonucleotide array analyses permits clustering of genes on the basis of the subcellular sites of their mRNA translation. A large fraction of yeast nuclear transcripts known to encode mitochondrial proteins is found in mitochondrial outer-membrane-bound fractions. These results confirm and extend a previous analysis conducted with partial genomic microarrays. Interesting statistical relations among mRNA localization, gene origin and mRNA lengths were found: longer and older mRNAs are more prone to be localized to the vicinity of mitochondria. These observations are included in a refined model of mitochondrial protein import. CONCLUSIONS: Mitochondrial biogenesis requires concerted expression of the many genes whose products make up the organelle. In the absence of any clear transcriptional program, coordinated mRNA localization could be an important element of the time-course of organelle construction. We have built a 'MitoChip' localization database from our results which allows us to identify interesting genes whose mRNA localization might be essential for mitochondrial biogenesis in most eukaryotic cells. Moreover, many components of the experimental and data-analysis strategy implemented here are of general relevance in global transcription studies. More... »

PAGES

r44

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2003-4-7-r44

DOI

http://dx.doi.org/10.1186/gb-2003-4-7-r44

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050079810

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12844360


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intracellular Membranes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitochondria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitochondrial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polyribosomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prokaryotic Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subcellular Fractions", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratoire de G\u00e9n\u00e9tique Mol\u00e9culaire, Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex O5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sylvestre", 
        "givenName": "Julien", 
        "id": "sg:person.01062224014.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062224014.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de G\u00e9n\u00e9tique Mol\u00e9culaire, Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex O5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vialette", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.012535751665.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012535751665.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de G\u00e9n\u00e9tique Mol\u00e9culaire, Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex O5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corral Debrinski", 
        "givenName": "Marisol", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de G\u00e9n\u00e9tique Mol\u00e9culaire, Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex O5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacq", 
        "givenName": "Claude", 
        "id": "sg:person.0613241513.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613241513.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.cellbio.17.1.569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001075954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0061(20000930)17:3<170::aid-yea25>3.0.co;2-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007616658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/cdf690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008475739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/cdf690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008475739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009221125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-0004(93)90090-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010171631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(02)01006-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010939780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.20.21.7881-7892.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011331623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcb.10073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014558773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017473553", 
          "https://doi.org/10.1038/75603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017473553", 
          "https://doi.org/10.1038/75603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-5266(02)00304-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018306384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(92)80192-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020474131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/embo-reports/kvf025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024246633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/17.19.5796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025394283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028500059", 
          "https://doi.org/10.1186/gb-2002-3-7-research0033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(00)00507-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028979956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/26620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030207622", 
          "https://doi.org/10.1038/26620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/26620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030207622", 
          "https://doi.org/10.1038/26620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20011726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034701701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20011726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034701701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(02)02528-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035963868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.cellbio.17.1.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036393217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040049153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-12-research0055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043794296", 
          "https://doi.org/10.1186/gb-2001-2-12-research0055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.76.19.9856-9867.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045205291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1327.1999.00658.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046075455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050120162", 
          "https://doi.org/10.1038/nrm878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050120162", 
          "https://doi.org/10.1038/nrm878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080487936", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081609343", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081750817", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083313338", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-07", 
    "datePublishedReg": "2003-07-01", 
    "description": "BACKGROUND: Subcellular messenger RNA localization is important in most eukaryotic cells, even in unicellular organisms like yeast for which this process has been underestimated. Microarrays are rarely used to study subcellular mRNA localization at whole-genome level, but can be adapted to that purpose. This work focuses on studying the repartition of yeast nuclear transcripts encoding mitochondrial proteins between free cytosolic polysomes and polysomes bound to the mitochondrial outer membrane.\nRESULTS: Combining biochemical fractionations with oligonucleotide array analyses permits clustering of genes on the basis of the subcellular sites of their mRNA translation. A large fraction of yeast nuclear transcripts known to encode mitochondrial proteins is found in mitochondrial outer-membrane-bound fractions. These results confirm and extend a previous analysis conducted with partial genomic microarrays. Interesting statistical relations among mRNA localization, gene origin and mRNA lengths were found: longer and older mRNAs are more prone to be localized to the vicinity of mitochondria. These observations are included in a refined model of mitochondrial protein import.\nCONCLUSIONS: Mitochondrial biogenesis requires concerted expression of the many genes whose products make up the organelle. In the absence of any clear transcriptional program, coordinated mRNA localization could be an important element of the time-course of organelle construction. We have built a 'MitoChip' localization database from our results which allows us to identify interesting genes whose mRNA localization might be essential for mitochondrial biogenesis in most eukaryotic cells. Moreover, many components of the experimental and data-analysis strategy implemented here are of general relevance in global transcription studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2003-4-7-r44", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria", 
    "pagination": "r44", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee90afd1c2ba2e64a9b5959f79af0112b5418c0b8468be151c3a68a1c43e71ce"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12844360"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2003-4-7-r44"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050079810"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2003-4-7-r44", 
      "https://app.dimensions.ai/details/publication/pub.1050079810"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2003-4-7-r44"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2003-4-7-r44'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2003-4-7-r44'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2003-4-7-r44'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2003-4-7-r44'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      71 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2003-4-7-r44 schema:about N1495fe8d10dd404dbfcc3d074c0907dd
2 N277b6453f4924a66914a4c6af5fc852b
3 N2d7400f623234605bd4104b4a05aabf6
4 N3a77be5cdf514c8daadd0730e4cbd89d
5 N5aa94b6eb4864b1990935f3755f4ee1f
6 N5c17750e3a5b4973b63f83a0abb8af58
7 N73bb2125b9814012afb1c976e5567a62
8 N799f8f8e114f4869b145e6c544232fea
9 N8fbe47ee16a44a35bcd2701b1695b306
10 N9b33e773cf624a0dbf63b4f250f96c10
11 Nbca420bea68a4428aafef58a0cf8dc95
12 Nc5467799584a47488d51b6348595f20a
13 Ncfb2e874502346a48e016a38bcf0a555
14 Nd0b899265b3b4a7eb81e2a9a99e89bf1
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author Nbc8c34f4215f4d5b8f48efe1ad843079
18 schema:citation sg:pub.10.1038/26620
19 sg:pub.10.1038/75603
20 sg:pub.10.1038/nrm878
21 sg:pub.10.1186/gb-2001-2-12-research0055
22 sg:pub.10.1186/gb-2002-3-7-research0033
23 https://app.dimensions.ai/details/publication/pub.1080487936
24 https://app.dimensions.ai/details/publication/pub.1081609343
25 https://app.dimensions.ai/details/publication/pub.1081750817
26 https://app.dimensions.ai/details/publication/pub.1083313338
27 https://doi.org/10.1002/1097-0061(20000930)17:3<170::aid-yea25>3.0.co;2-v
28 https://doi.org/10.1002/jcb.10073
29 https://doi.org/10.1016/0014-5793(92)80192-j
30 https://doi.org/10.1016/0968-0004(93)90090-a
31 https://doi.org/10.1016/s0014-5793(02)02528-0
32 https://doi.org/10.1016/s0896-6273(02)01006-1
33 https://doi.org/10.1016/s0960-9822(00)00507-8
34 https://doi.org/10.1016/s1369-5266(02)00304-7
35 https://doi.org/10.1042/bj20011726
36 https://doi.org/10.1046/j.1432-1327.1999.00658.x
37 https://doi.org/10.1093/embo-reports/kvf025
38 https://doi.org/10.1093/emboj/17.19.5796
39 https://doi.org/10.1093/emboj/cdf690
40 https://doi.org/10.1093/nar/30.1.31
41 https://doi.org/10.1126/science.1073997
42 https://doi.org/10.1128/jvi.76.19.9856-9867.2002
43 https://doi.org/10.1128/mcb.20.21.7881-7892.2000
44 https://doi.org/10.1146/annurev.cellbio.17.1.297
45 https://doi.org/10.1146/annurev.cellbio.17.1.569
46 schema:datePublished 2003-07
47 schema:datePublishedReg 2003-07-01
48 schema:description BACKGROUND: Subcellular messenger RNA localization is important in most eukaryotic cells, even in unicellular organisms like yeast for which this process has been underestimated. Microarrays are rarely used to study subcellular mRNA localization at whole-genome level, but can be adapted to that purpose. This work focuses on studying the repartition of yeast nuclear transcripts encoding mitochondrial proteins between free cytosolic polysomes and polysomes bound to the mitochondrial outer membrane. RESULTS: Combining biochemical fractionations with oligonucleotide array analyses permits clustering of genes on the basis of the subcellular sites of their mRNA translation. A large fraction of yeast nuclear transcripts known to encode mitochondrial proteins is found in mitochondrial outer-membrane-bound fractions. These results confirm and extend a previous analysis conducted with partial genomic microarrays. Interesting statistical relations among mRNA localization, gene origin and mRNA lengths were found: longer and older mRNAs are more prone to be localized to the vicinity of mitochondria. These observations are included in a refined model of mitochondrial protein import. CONCLUSIONS: Mitochondrial biogenesis requires concerted expression of the many genes whose products make up the organelle. In the absence of any clear transcriptional program, coordinated mRNA localization could be an important element of the time-course of organelle construction. We have built a 'MitoChip' localization database from our results which allows us to identify interesting genes whose mRNA localization might be essential for mitochondrial biogenesis in most eukaryotic cells. Moreover, many components of the experimental and data-analysis strategy implemented here are of general relevance in global transcription studies.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N8d95dab34b2b4652bdf6395ebc4361ac
53 Naa2f159743cd40e784d84b8a32053658
54 sg:journal.1023439
55 schema:name Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria
56 schema:pagination r44
57 schema:productId N5ed8e22dbaa444e7a13a709d9a0cc15b
58 N628dd61bf2754263b56ec153f6f767df
59 Nabebc79309be445eb3f4fe8ca4ec889f
60 Nb12522c8f3aa41ba9e35672856b44764
61 Nf19d11459779468ba5a3c685c414bd16
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050079810
63 https://doi.org/10.1186/gb-2003-4-7-r44
64 schema:sdDatePublished 2019-04-10T15:02
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Ndf3e91b91beb4ac68cd54c1e871580b2
67 schema:url http://link.springer.com/10.1186%2Fgb-2003-4-7-r44
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N1495fe8d10dd404dbfcc3d074c0907dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Phylogeny
73 rdf:type schema:DefinedTerm
74 N277b6453f4924a66914a4c6af5fc852b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Saccharomyces cerevisiae
76 rdf:type schema:DefinedTerm
77 N2d7400f623234605bd4104b4a05aabf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Biological Transport
79 rdf:type schema:DefinedTerm
80 N3a77be5cdf514c8daadd0730e4cbd89d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Genes, Fungal
82 rdf:type schema:DefinedTerm
83 N4cc84067e1924b27ae1016b8d133c7bb schema:name Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex O5, France
84 rdf:type schema:Organization
85 N5aa94b6eb4864b1990935f3755f4ee1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Mitochondria
87 rdf:type schema:DefinedTerm
88 N5c17750e3a5b4973b63f83a0abb8af58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Intracellular Membranes
90 rdf:type schema:DefinedTerm
91 N5ed8e22dbaa444e7a13a709d9a0cc15b schema:name pubmed_id
92 schema:value 12844360
93 rdf:type schema:PropertyValue
94 N628dd61bf2754263b56ec153f6f767df schema:name nlm_unique_id
95 schema:value 100960660
96 rdf:type schema:PropertyValue
97 N73bb2125b9814012afb1c976e5567a62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Saccharomyces cerevisiae Proteins
99 rdf:type schema:DefinedTerm
100 N799f8f8e114f4869b145e6c544232fea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name RNA, Fungal
102 rdf:type schema:DefinedTerm
103 N8ba488af753e485d99d7575b62ab5caf schema:affiliation N4cc84067e1924b27ae1016b8d133c7bb
104 schema:familyName Corral Debrinski
105 schema:givenName Marisol
106 rdf:type schema:Person
107 N8d95dab34b2b4652bdf6395ebc4361ac schema:volumeNumber 4
108 rdf:type schema:PublicationVolume
109 N8fbe47ee16a44a35bcd2701b1695b306 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Subcellular Fractions
111 rdf:type schema:DefinedTerm
112 N9b33e773cf624a0dbf63b4f250f96c10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Prokaryotic Cells
114 rdf:type schema:DefinedTerm
115 Na7d577b819914de796650a38e017b91b schema:name Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex O5, France
116 rdf:type schema:Organization
117 Na8abf70ed56b472cb853689cee70d089 schema:name Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex O5, France
118 rdf:type schema:Organization
119 Naa2f159743cd40e784d84b8a32053658 schema:issueNumber 7
120 rdf:type schema:PublicationIssue
121 Nabebc79309be445eb3f4fe8ca4ec889f schema:name readcube_id
122 schema:value ee90afd1c2ba2e64a9b5959f79af0112b5418c0b8468be151c3a68a1c43e71ce
123 rdf:type schema:PropertyValue
124 Nb12522c8f3aa41ba9e35672856b44764 schema:name doi
125 schema:value 10.1186/gb-2003-4-7-r44
126 rdf:type schema:PropertyValue
127 Nb3fa5de3d7c84555a021877fdae994d3 rdf:first N8ba488af753e485d99d7575b62ab5caf
128 rdf:rest Nf0c771b1cfff41e6a545e253d482e5ce
129 Nbc8c34f4215f4d5b8f48efe1ad843079 rdf:first sg:person.01062224014.94
130 rdf:rest Nca1c075fb34446098c40f31c79b074ac
131 Nbca420bea68a4428aafef58a0cf8dc95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Polyribosomes
133 rdf:type schema:DefinedTerm
134 Nc5467799584a47488d51b6348595f20a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Mitochondrial Proteins
136 rdf:type schema:DefinedTerm
137 Nca1c075fb34446098c40f31c79b074ac rdf:first sg:person.012535751665.75
138 rdf:rest Nb3fa5de3d7c84555a021877fdae994d3
139 Ncc5fd8c2d0b74731aab8791b984fc357 schema:name Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex O5, France
140 rdf:type schema:Organization
141 Ncfb2e874502346a48e016a38bcf0a555 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name RNA, Messenger
143 rdf:type schema:DefinedTerm
144 Nd0b899265b3b4a7eb81e2a9a99e89bf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Oligonucleotide Array Sequence Analysis
146 rdf:type schema:DefinedTerm
147 Ndf3e91b91beb4ac68cd54c1e871580b2 schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Nf0c771b1cfff41e6a545e253d482e5ce rdf:first sg:person.0613241513.43
150 rdf:rest rdf:nil
151 Nf19d11459779468ba5a3c685c414bd16 schema:name dimensions_id
152 schema:value pub.1050079810
153 rdf:type schema:PropertyValue
154 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
155 schema:name Biological Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
158 schema:name Genetics
159 rdf:type schema:DefinedTerm
160 sg:journal.1023439 schema:issn 1465-6906
161 1474-760X
162 schema:name Genome Biology
163 rdf:type schema:Periodical
164 sg:person.01062224014.94 schema:affiliation Ncc5fd8c2d0b74731aab8791b984fc357
165 schema:familyName Sylvestre
166 schema:givenName Julien
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062224014.94
168 rdf:type schema:Person
169 sg:person.012535751665.75 schema:affiliation Na7d577b819914de796650a38e017b91b
170 schema:familyName Vialette
171 schema:givenName Stéphane
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012535751665.75
173 rdf:type schema:Person
174 sg:person.0613241513.43 schema:affiliation Na8abf70ed56b472cb853689cee70d089
175 schema:familyName Jacq
176 schema:givenName Claude
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613241513.43
178 rdf:type schema:Person
179 sg:pub.10.1038/26620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030207622
180 https://doi.org/10.1038/26620
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/75603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017473553
183 https://doi.org/10.1038/75603
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nrm878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050120162
186 https://doi.org/10.1038/nrm878
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/gb-2001-2-12-research0055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043794296
189 https://doi.org/10.1186/gb-2001-2-12-research0055
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/gb-2002-3-7-research0033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028500059
192 https://doi.org/10.1186/gb-2002-3-7-research0033
193 rdf:type schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1080487936 schema:CreativeWork
195 https://app.dimensions.ai/details/publication/pub.1081609343 schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1081750817 schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1083313338 schema:CreativeWork
198 https://doi.org/10.1002/1097-0061(20000930)17:3<170::aid-yea25>3.0.co;2-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1007616658
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/jcb.10073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014558773
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/0014-5793(92)80192-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1020474131
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/0968-0004(93)90090-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010171631
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0014-5793(02)02528-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035963868
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0896-6273(02)01006-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010939780
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0960-9822(00)00507-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028979956
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s1369-5266(02)00304-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018306384
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1042/bj20011726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034701701
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1046/j.1432-1327.1999.00658.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046075455
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/embo-reports/kvf025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024246633
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/emboj/17.19.5796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025394283
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/emboj/cdf690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008475739
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/30.1.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009221125
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1073997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040049153
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1128/jvi.76.19.9856-9867.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045205291
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1128/mcb.20.21.7881-7892.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011331623
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1146/annurev.cellbio.17.1.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036393217
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1146/annurev.cellbio.17.1.569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001075954
235 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...