Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-06-18

AUTHORS

Jo Vandesompele, Katleen De Preter, Filip Pattyn, Bruce Poppe, Nadine Van Roy, Anne De Paepe, Frank Speleman

ABSTRACT

BACKGROUND: Gene-expression analysis is increasingly important in biological research, with real-time reverse transcription PCR (RT-PCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Given the increased sensitivity, reproducibility and large dynamic range of this methodology, the requirements for a proper internal control gene for normalization have become increasingly stringent. Although housekeeping gene expression has been reported to vary considerably, no systematic survey has properly determined the errors related to the common practice of using only one control gene, nor presented an adequate way of working around this problem. RESULTS: We outline a robust and innovative strategy to identify the most stably expressed control genes in a given set of tissues, and to determine the minimum number of genes required to calculate a reliable normalization factor. We have evaluated ten housekeeping genes from different abundance and functional classes in various human tissues, and demonstrated that the conventional use of a single gene for normalization leads to relatively large errors in a significant proportion of samples tested. The geometric mean of multiple carefully selected housekeeping genes was validated as an accurate normalization factor by analyzing publicly available microarray data. CONCLUSIONS: The normalization strategy presented here is a prerequisite for accurate RT-PCR expression profiling, which, among other things, opens up the possibility of studying the biological relevance of small expression differences. More... »

PAGES

research0034.1-research0034.11

Journal

TITLE

Genome Biology

ISSUE

7

VOLUME

3

Related Patents

  • Methods For Rna Quantification
  • Plant Protective Composition Containing Alpha-Hydroxy Acids
  • Methods And Compositions For The Preservation Of Organs
  • Preprimitive Streak And Mesendoderm Cells
  • Flavonoids And Animal Health And Performance
  • Non-Invasive Assays For Embryo Quality
  • Gene Expression Analysis Tool
  • Methods For Diagnosing Cancer
  • Metagene Expression Signature For Prognosis Of Breast Cancer Patients
  • Irak-Related Interventions And Diagnosis
  • Flavonoids And Animal Health And Performance
  • Predicting Gastroenteropancreatic Neuroendocrine Neoplasms (Gep-Nens)
  • Gene Expression Analysis Tool
  • Diagnostic And Prognostic Methods For Lung Disorders Using Gene Expression Profiles From Nose Epithelial Cells
  • Risk Prognosis Method For Chronic Lymphocytic Leukemia
  • Pdx-1 Expressing Dorsal And Ventral Foregut Endoderm
  • Data Processing, Analysis Method Of Gene Expression Data To Identify Endogenous Reference Genes
  • Risk Scores Based On Human Phosphodiesterase 4d Variant 7 Expression
  • Diagnostic For Lung Disorders Using Class Prediction
  • Methods For Assessing Rna Quality
  • Diagnostic For Lung Disorders Using Class Prediction
  • Oxidative Stress And Cardiovascular Disease Events
  • Method For Predicting Respiratory Toxicity Of Compounds
  • Release Media
  • Method For Normalization Of Quantitative Pcr And Microarrays
  • Methylation And Microrna Markers Of Early-Stage Non-Small Cell Lung Cancer
  • Cationic Liposomes For The Delivery Of High Molecular Weight Compounds
  • Novel Markers Of Papillary And Reticular Fibroblasts And Uses Thereof
  • Risk Prognosis Method For Chronic Lymphocytic Leukemia
  • Peripheral Blood Gene Markers For Early Diagnosis Of Parkinson's Disease
  • Data Processing, Analysis Method Of Gene Expression Data To Identify Endogenous Reference Genes
  • Preprimitive Streak And Mesendoderm Cells
  • Signature For The Diagnosis Of Cancer Aggressiveness And Genetic Instability
  • Compositions And Methods For Treating Friedreich's Ataxia With Interferon Gamma
  • In Vitro Method For Predicting Fecundity Of Semen
  • Diagnostic For Lung Disorders Using Class Prediction
  • Predicting Cancer Recurrence Using A Prognostic Model That Combines Immunohistochemical Staining And Gene Expression Profiling
  • Diagnostic Microrna Profiling In Cutaneous T-Cell Lymphoma (Ctcl)
  • Preprimitive Streak And Mesendoderm Cells
  • Compositions, Methods And Kits For Diagnosis Of A Gastroenteropancreatic Neuroendocrine Neoplasm
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034

    DOI

    http://dx.doi.org/10.1186/gb-2002-3-7-research0034

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039751959

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12184808


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Complementary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reference Standards", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reverse Transcriptase Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Cells, Cultured", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vandesompele", 
            "givenName": "Jo", 
            "id": "sg:person.0615166774.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615166774.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Preter", 
            "givenName": "Katleen", 
            "id": "sg:person.01213251551.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213251551.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pattyn", 
            "givenName": "Filip", 
            "id": "sg:person.01363016625.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363016625.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poppe", 
            "givenName": "Bruce", 
            "id": "sg:person.01204242653.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204242653.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Roy", 
            "givenName": "Nadine", 
            "id": "sg:person.0756500604.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756500604.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Paepe", 
            "givenName": "Anne", 
            "id": "sg:person.01217112307.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217112307.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Speleman", 
            "givenName": "Frank", 
            "id": "sg:person.01115133072.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115133072.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/3327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011289709", 
              "https://doi.org/10.1038/3327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35076576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027465054", 
              "https://doi.org/10.1038/35076576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012837556", 
              "https://doi.org/10.1038/4434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0993-1026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045863719", 
              "https://doi.org/10.1038/nbt0993-1026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/73432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024393583", 
              "https://doi.org/10.1038/73432"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-06-18", 
        "datePublishedReg": "2002-06-18", 
        "description": "BACKGROUND: Gene-expression analysis is increasingly important in biological research, with real-time reverse transcription PCR (RT-PCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Given the increased sensitivity, reproducibility and large dynamic range of this methodology, the requirements for a proper internal control gene for normalization have become increasingly stringent. Although housekeeping gene expression has been reported to vary considerably, no systematic survey has properly determined the errors related to the common practice of using only one control gene, nor presented an adequate way of working around this problem.\nRESULTS: We outline a robust and innovative strategy to identify the most stably expressed control genes in a given set of tissues, and to determine the minimum number of genes required to calculate a reliable normalization factor. We have evaluated ten housekeeping genes from different abundance and functional classes in various human tissues, and demonstrated that the conventional use of a single gene for normalization leads to relatively large errors in a significant proportion of samples tested. The geometric mean of multiple carefully selected housekeeping genes was validated as an accurate normalization factor by analyzing publicly available microarray data.\nCONCLUSIONS: The normalization strategy presented here is a prerequisite for accurate RT-PCR expression profiling, which, among other things, opens up the possibility of studying the biological relevance of small expression differences.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8506757", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "control genes", 
          "internal control genes", 
          "expression profiling", 
          "housekeeping genes", 
          "gene expression analysis", 
          "accurate expression profiling", 
          "available microarray data", 
          "small expression differences", 
          "quantitative RT-PCR data", 
          "real-time reverse transcription-PCR", 
          "reverse transcription-PCR", 
          "gene expression", 
          "set of tissues", 
          "single gene", 
          "accurate normalization factor", 
          "expression differences", 
          "real-time quantitative RT-PCR data", 
          "biological research", 
          "genes", 
          "reliable normalization factor", 
          "different abundances", 
          "microarray data", 
          "biological relevance", 
          "accurate normalization", 
          "RT-PCR data", 
          "transcription-PCR", 
          "profiling", 
          "human tissues", 
          "multiple internal control genes", 
          "systematic survey", 
          "normalization strategy", 
          "tissue", 
          "abundance", 
          "functional class", 
          "PCR", 
          "expression", 
          "method of choice", 
          "significant proportion", 
          "innovative strategies", 
          "factors", 
          "prerequisite", 
          "strategies", 
          "analysis", 
          "number", 
          "normalization factor", 
          "proportion", 
          "data", 
          "relevance", 
          "sensitivity", 
          "large dynamic range", 
          "range", 
          "class", 
          "possibility", 
          "differences", 
          "requirements", 
          "normalization", 
          "common practice", 
          "set", 
          "minimum number", 
          "samples", 
          "research", 
          "dynamic range", 
          "conventional use", 
          "use", 
          "geometric averaging", 
          "reproducibility", 
          "survey", 
          "way", 
          "means", 
          "method", 
          "choice", 
          "methodology", 
          "adequate way", 
          "averaging", 
          "geometric mean", 
          "practice", 
          "error", 
          "problem", 
          "large errors", 
          "things", 
          "proper internal control gene", 
          "accurate RT-PCR expression profiling", 
          "RT-PCR expression profiling"
        ], 
        "name": "Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes", 
        "pagination": "research0034.1-research0034.11", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039751959"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/gb-2002-3-7-research0034"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12184808"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/gb-2002-3-7-research0034", 
          "https://app.dimensions.ai/details/publication/pub.1039751959"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_358.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/gb-2002-3-7-research0034"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034'


     

    This table displays all metadata directly associated to this object as RDF triples.

    253 TRIPLES      22 PREDICATES      125 URIs      112 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/gb-2002-3-7-research0034 schema:about N3a9baae32b6c4988b2750938d7246b2a
    2 N3f1bfdcaeecf471ebc94d3620395b343
    3 N52e9950b3dd64db5b5f32bfb30e93a2a
    4 N541ab74b9e094fd88139ee1c53248ecf
    5 N59551bc6af0f4ab69c44d7235d3f17ad
    6 N67b6ca47377142b79978f0a121c2da5b
    7 N867f000fb76647f3981f3259981c18fe
    8 Na0720d70559147d2a011fdf82609688a
    9 Nbea5432f59524283a6e6f66cc2a4eb26
    10 Ne8d1c93321c14aa0b04d1fe56e260eb5
    11 Nf9def31d02eb493e8d84912f09b1276c
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N56d1d6f6f26e42ad937a407943b9b909
    15 schema:citation sg:pub.10.1038/3327
    16 sg:pub.10.1038/35076576
    17 sg:pub.10.1038/4434
    18 sg:pub.10.1038/73432
    19 sg:pub.10.1038/nbt0993-1026
    20 schema:datePublished 2002-06-18
    21 schema:datePublishedReg 2002-06-18
    22 schema:description BACKGROUND: Gene-expression analysis is increasingly important in biological research, with real-time reverse transcription PCR (RT-PCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Given the increased sensitivity, reproducibility and large dynamic range of this methodology, the requirements for a proper internal control gene for normalization have become increasingly stringent. Although housekeeping gene expression has been reported to vary considerably, no systematic survey has properly determined the errors related to the common practice of using only one control gene, nor presented an adequate way of working around this problem. RESULTS: We outline a robust and innovative strategy to identify the most stably expressed control genes in a given set of tissues, and to determine the minimum number of genes required to calculate a reliable normalization factor. We have evaluated ten housekeeping genes from different abundance and functional classes in various human tissues, and demonstrated that the conventional use of a single gene for normalization leads to relatively large errors in a significant proportion of samples tested. The geometric mean of multiple carefully selected housekeeping genes was validated as an accurate normalization factor by analyzing publicly available microarray data. CONCLUSIONS: The normalization strategy presented here is a prerequisite for accurate RT-PCR expression profiling, which, among other things, opens up the possibility of studying the biological relevance of small expression differences.
    23 schema:genre article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N0da8d38194404dda9d958c8f6cdf6064
    27 Nb2540f6f9a344f56aa69a8073a1ba76c
    28 sg:journal.1023439
    29 schema:keywords PCR
    30 RT-PCR data
    31 RT-PCR expression profiling
    32 abundance
    33 accurate RT-PCR expression profiling
    34 accurate expression profiling
    35 accurate normalization
    36 accurate normalization factor
    37 adequate way
    38 analysis
    39 available microarray data
    40 averaging
    41 biological relevance
    42 biological research
    43 choice
    44 class
    45 common practice
    46 control genes
    47 conventional use
    48 data
    49 differences
    50 different abundances
    51 dynamic range
    52 error
    53 expression
    54 expression differences
    55 expression profiling
    56 factors
    57 functional class
    58 gene expression
    59 gene expression analysis
    60 genes
    61 geometric averaging
    62 geometric mean
    63 housekeeping genes
    64 human tissues
    65 innovative strategies
    66 internal control genes
    67 large dynamic range
    68 large errors
    69 means
    70 method
    71 method of choice
    72 methodology
    73 microarray data
    74 minimum number
    75 multiple internal control genes
    76 normalization
    77 normalization factor
    78 normalization strategy
    79 number
    80 possibility
    81 practice
    82 prerequisite
    83 problem
    84 profiling
    85 proper internal control gene
    86 proportion
    87 quantitative RT-PCR data
    88 range
    89 real-time quantitative RT-PCR data
    90 real-time reverse transcription-PCR
    91 relevance
    92 reliable normalization factor
    93 reproducibility
    94 requirements
    95 research
    96 reverse transcription-PCR
    97 samples
    98 sensitivity
    99 set
    100 set of tissues
    101 significant proportion
    102 single gene
    103 small expression differences
    104 strategies
    105 survey
    106 systematic survey
    107 things
    108 tissue
    109 transcription-PCR
    110 use
    111 way
    112 schema:name Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes
    113 schema:pagination research0034.1-research0034.11
    114 schema:productId N287ea369228e4dee845299131b39b89d
    115 N9eb9118097a642db89d3f77f5dd649bd
    116 Nc0e9995e823b46cdb375a3255f390ffa
    117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
    118 https://doi.org/10.1186/gb-2002-3-7-research0034
    119 schema:sdDatePublished 2022-01-01T18:12
    120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    121 schema:sdPublisher N56e34c95712d43a8be70327616ff2e01
    122 schema:url https://doi.org/10.1186/gb-2002-3-7-research0034
    123 sgo:license sg:explorer/license/
    124 sgo:sdDataset articles
    125 rdf:type schema:ScholarlyArticle
    126 N0da8d38194404dda9d958c8f6cdf6064 schema:volumeNumber 3
    127 rdf:type schema:PublicationVolume
    128 N2660b6311f154d62a89a7f139696618b rdf:first sg:person.01363016625.39
    129 rdf:rest N8055f3cf695645a88aad6a714a1c3929
    130 N287ea369228e4dee845299131b39b89d schema:name dimensions_id
    131 schema:value pub.1039751959
    132 rdf:type schema:PropertyValue
    133 N3a9baae32b6c4988b2750938d7246b2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Reverse Transcriptase Polymerase Chain Reaction
    135 rdf:type schema:DefinedTerm
    136 N3f1bfdcaeecf471ebc94d3620395b343 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Time Factors
    138 rdf:type schema:DefinedTerm
    139 N52e9950b3dd64db5b5f32bfb30e93a2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Algorithms
    141 rdf:type schema:DefinedTerm
    142 N541ab74b9e094fd88139ee1c53248ecf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Gene Expression Profiling
    144 rdf:type schema:DefinedTerm
    145 N56d1d6f6f26e42ad937a407943b9b909 rdf:first sg:person.0615166774.28
    146 rdf:rest N7357bfe4c9624719891e93f9c00fb659
    147 N56e34c95712d43a8be70327616ff2e01 schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 N59551bc6af0f4ab69c44d7235d3f17ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Tumor Cells, Cultured
    151 rdf:type schema:DefinedTerm
    152 N67b6ca47377142b79978f0a121c2da5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name DNA, Complementary
    154 rdf:type schema:DefinedTerm
    155 N7357bfe4c9624719891e93f9c00fb659 rdf:first sg:person.01213251551.72
    156 rdf:rest N2660b6311f154d62a89a7f139696618b
    157 N8055f3cf695645a88aad6a714a1c3929 rdf:first sg:person.01204242653.58
    158 rdf:rest Na2c0805c77674ddb91adb6db2ff420f2
    159 N867f000fb76647f3981f3259981c18fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Female
    161 rdf:type schema:DefinedTerm
    162 N917eefda1c5541ae84bb7b3f2dcde2e3 rdf:first sg:person.01115133072.27
    163 rdf:rest rdf:nil
    164 N9eb9118097a642db89d3f77f5dd649bd schema:name doi
    165 schema:value 10.1186/gb-2002-3-7-research0034
    166 rdf:type schema:PropertyValue
    167 Na0720d70559147d2a011fdf82609688a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Reproducibility of Results
    169 rdf:type schema:DefinedTerm
    170 Na2c0805c77674ddb91adb6db2ff420f2 rdf:first sg:person.0756500604.32
    171 rdf:rest Nceea569c6e31415db83b46c7a243ce07
    172 Nb2540f6f9a344f56aa69a8073a1ba76c schema:issueNumber 7
    173 rdf:type schema:PublicationIssue
    174 Nbea5432f59524283a6e6f66cc2a4eb26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Humans
    176 rdf:type schema:DefinedTerm
    177 Nc0e9995e823b46cdb375a3255f390ffa schema:name pubmed_id
    178 schema:value 12184808
    179 rdf:type schema:PropertyValue
    180 Nceea569c6e31415db83b46c7a243ce07 rdf:first sg:person.01217112307.19
    181 rdf:rest N917eefda1c5541ae84bb7b3f2dcde2e3
    182 Ne8d1c93321c14aa0b04d1fe56e260eb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name RNA
    184 rdf:type schema:DefinedTerm
    185 Nf9def31d02eb493e8d84912f09b1276c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Reference Standards
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Biological Sciences
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Genetics
    193 rdf:type schema:DefinedTerm
    194 sg:grant.8506757 http://pending.schema.org/fundedItem sg:pub.10.1186/gb-2002-3-7-research0034
    195 rdf:type schema:MonetaryGrant
    196 sg:journal.1023439 schema:issn 1465-6906
    197 1474-760X
    198 schema:name Genome Biology
    199 schema:publisher Springer Nature
    200 rdf:type schema:Periodical
    201 sg:person.01115133072.27 schema:affiliation grid-institutes:grid.410566.0
    202 schema:familyName Speleman
    203 schema:givenName Frank
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115133072.27
    205 rdf:type schema:Person
    206 sg:person.01204242653.58 schema:affiliation grid-institutes:grid.410566.0
    207 schema:familyName Poppe
    208 schema:givenName Bruce
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204242653.58
    210 rdf:type schema:Person
    211 sg:person.01213251551.72 schema:affiliation grid-institutes:grid.410566.0
    212 schema:familyName De Preter
    213 schema:givenName Katleen
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213251551.72
    215 rdf:type schema:Person
    216 sg:person.01217112307.19 schema:affiliation grid-institutes:grid.410566.0
    217 schema:familyName De Paepe
    218 schema:givenName Anne
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217112307.19
    220 rdf:type schema:Person
    221 sg:person.01363016625.39 schema:affiliation grid-institutes:grid.410566.0
    222 schema:familyName Pattyn
    223 schema:givenName Filip
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363016625.39
    225 rdf:type schema:Person
    226 sg:person.0615166774.28 schema:affiliation grid-institutes:grid.410566.0
    227 schema:familyName Vandesompele
    228 schema:givenName Jo
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615166774.28
    230 rdf:type schema:Person
    231 sg:person.0756500604.32 schema:affiliation grid-institutes:grid.410566.0
    232 schema:familyName Van Roy
    233 schema:givenName Nadine
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756500604.32
    235 rdf:type schema:Person
    236 sg:pub.10.1038/3327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011289709
    237 https://doi.org/10.1038/3327
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/35076576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027465054
    240 https://doi.org/10.1038/35076576
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/4434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012837556
    243 https://doi.org/10.1038/4434
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/73432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024393583
    246 https://doi.org/10.1038/73432
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nbt0993-1026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045863719
    249 https://doi.org/10.1038/nbt0993-1026
    250 rdf:type schema:CreativeWork
    251 grid-institutes:grid.410566.0 schema:alternateName Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium
    252 schema:name Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000 Ghent, Belgium
    253 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...