Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-06

AUTHORS

Jo Vandesompele, Katleen De Preter, Filip Pattyn, Bruce Poppe, Nadine Van Roy, Anne De Paepe, Frank Speleman

ABSTRACT

BACKGROUND: Gene-expression analysis is increasingly important in biological research, with real-time reverse transcription PCR (RT-PCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Given the increased sensitivity, reproducibility and large dynamic range of this methodology, the requirements for a proper internal control gene for normalization have become increasingly stringent. Although housekeeping gene expression has been reported to vary considerably, no systematic survey has properly determined the errors related to the common practice of using only one control gene, nor presented an adequate way of working around this problem. RESULTS: We outline a robust and innovative strategy to identify the most stably expressed control genes in a given set of tissues, and to determine the minimum number of genes required to calculate a reliable normalization factor. We have evaluated ten housekeeping genes from different abundance and functional classes in various human tissues, and demonstrated that the conventional use of a single gene for normalization leads to relatively large errors in a significant proportion of samples tested. The geometric mean of multiple carefully selected housekeeping genes was validated as an accurate normalization factor by analyzing publicly available microarray data. CONCLUSIONS: The normalization strategy presented here is a prerequisite for accurate RT-PCR expression profiling, which, among other things, opens up the possibility of studying the biological relevance of small expression differences. More... »

PAGES

research0034.1

Journal

TITLE

Genome Biology

ISSUE

7

VOLUME

3

Author Affiliations

Related Patents

  • Gene Expression Analysis Tool
  • Methods For Diagnosing Cancer
  • Metagene Expression Signature For Prognosis Of Breast Cancer Patients
  • Preprimitive Streak And Mesendoderm Cells
  • Methods And Compositions For The Preservation Of Organs
  • Methods For Rna Quantification
  • Plant Protective Composition Containing Alpha-Hydroxy Acids
  • Gene Expression Analysis Tool
  • Risk Prognosis Method For Chronic Lymphocytic Leukemia
  • Predicting Gastroenteropancreatic Neuroendocrine Neoplasms (Gep-Nens)
  • Diagnostic And Prognostic Methods For Lung Disorders Using Gene Expression Profiles From Nose Epithelial Cells
  • Irak-Related Interventions And Diagnosis
  • Data Processing, Analysis Method Of Gene Expression Data To Identify Endogenous Reference Genes
  • Polynucleotide Markers
  • Methods Of Prostate Cancer Prognosis
  • Peptides Targeting Receptor Activator Of Nuclear Factor-Kappa B (Rank) And Their Applications
  • Risk Scores Based On Human Phosphodiesterase 4d Variant 7 Expression
  • Method For Predicting Respiratory Toxicity Of Compounds
  • Method For Normalization Of Quantitative Pcr And Microarrays
  • Diagnostic For Lung Disorders Using Class Prediction
  • Methods For Assessing Rna Quality
  • Diagnostic For Lung Disorders Using Class Prediction
  • Oxidative Stress And Cardiovascular Disease Events
  • Peripheral Blood Gene Markers For Early Diagnosis Of Parkinson's Disease
  • Signature For The Diagnosis Of Cancer Aggressiveness And Genetic Instability
  • Methylation And Microrna Markers Of Early-Stage Non-Small Cell Lung Cancer
  • Risk Prognosis Method For Chronic Lymphocytic Leukemia
  • Cationic Liposomes For The Delivery Of High Molecular Weight Compounds
  • Compositions And Methods For Treating Friedreich's Ataxia With Interferon Gamma
  • Novel Markers Of Papillary And Reticular Fibroblasts And Uses Thereof
  • In Vitro Method For Predicting Fecundity Of Semen
  • Compositions, Methods And Kits For Diagnosis Of A Gastroenteropancreatic Neuroendocrine Neoplasm
  • Diagnostic Microrna Profiling In Cutaneous T-Cell Lymphoma (Ctcl)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034

    DOI

    http://dx.doi.org/10.1186/gb-2002-3-7-research0034

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039751959

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12184808


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Complementary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reference Standards", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reverse Transcriptase Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Cells, Cultured", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ghent University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vandesompele", 
            "givenName": "Jo", 
            "id": "sg:person.0615166774.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615166774.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ghent University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Preter", 
            "givenName": "Katleen", 
            "id": "sg:person.01213251551.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213251551.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ghent University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pattyn", 
            "givenName": "Filip", 
            "id": "sg:person.01363016625.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363016625.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ghent University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poppe", 
            "givenName": "Bruce", 
            "id": "sg:person.01204242653.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204242653.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ghent University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Roy", 
            "givenName": "Nadine", 
            "id": "sg:person.0756500604.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756500604.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ghent University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Paepe", 
            "givenName": "Anne", 
            "id": "sg:person.01217112307.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217112307.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ghent University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Speleman", 
            "givenName": "Frank", 
            "id": "sg:person.01115133072.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115133072.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0168-1656(99)00163-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000522703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/21.16.3809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001282835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/abio.2001.5564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005834355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/3327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011289709", 
              "https://doi.org/10.1038/3327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/3327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011289709", 
              "https://doi.org/10.1038/3327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012837556", 
              "https://doi.org/10.1038/4434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012837556", 
              "https://doi.org/10.1038/4434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7799(01)01792-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013560057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.161242998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015842262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6.10.986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018725591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1677/jme.0.0250169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020545562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/73432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024393583", 
              "https://doi.org/10.1038/73432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/73432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024393583", 
              "https://doi.org/10.1038/73432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35076576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027465054", 
              "https://doi.org/10.1038/35076576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35076576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027465054", 
              "https://doi.org/10.1038/35076576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jmg.29.6.375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033948722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0993-1026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045863719", 
              "https://doi.org/10.1038/nbt0993-1026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.12.2549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048626178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0968-0004(99)01460-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051595821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/abio.2000.4889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051610804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5235.467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physiolgenomics.00020.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063200382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074481978", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.1999.17.7.2264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074549838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2144/00292rv02", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074686252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physiolgenomics.2000.2.3.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074707686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078441835", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082871296", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-06", 
        "datePublishedReg": "2002-06-01", 
        "description": "BACKGROUND: Gene-expression analysis is increasingly important in biological research, with real-time reverse transcription PCR (RT-PCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Given the increased sensitivity, reproducibility and large dynamic range of this methodology, the requirements for a proper internal control gene for normalization have become increasingly stringent. Although housekeeping gene expression has been reported to vary considerably, no systematic survey has properly determined the errors related to the common practice of using only one control gene, nor presented an adequate way of working around this problem.\nRESULTS: We outline a robust and innovative strategy to identify the most stably expressed control genes in a given set of tissues, and to determine the minimum number of genes required to calculate a reliable normalization factor. We have evaluated ten housekeeping genes from different abundance and functional classes in various human tissues, and demonstrated that the conventional use of a single gene for normalization leads to relatively large errors in a significant proportion of samples tested. The geometric mean of multiple carefully selected housekeeping genes was validated as an accurate normalization factor by analyzing publicly available microarray data.\nCONCLUSIONS: The normalization strategy presented here is a prerequisite for accurate RT-PCR expression profiling, which, among other things, opens up the possibility of studying the biological relevance of small expression differences.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes", 
        "pagination": "research0034.1", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bd5c48d375651692a896c6b7c1c4a8809579bfdd0fc893f21f661530313039f6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12184808"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100960660"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/gb-2002-3-7-research0034"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039751959"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/gb-2002-3-7-research0034", 
          "https://app.dimensions.ai/details/publication/pub.1039751959"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fgb-2002-3-7-research0034"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-7-research0034'


     

    This table displays all metadata directly associated to this object as RDF triples.

    229 TRIPLES      21 PREDICATES      64 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/gb-2002-3-7-research0034 schema:about N30039c6924b845ac808e798f075886df
    2 N4e6a6c429cef426d819d78891e6d6bf8
    3 N6a4903036ac847e983e5cc9cc8d13ee2
    4 N878dad5a62c44da2b586b16e9cc4f98d
    5 N88276359adb74beca096de80e43587bf
    6 N96800d23704f4058a1b763dfe4c8f799
    7 N9caff0b9422848389294d68adf81ee64
    8 Nc7273c7d3f2f4f6b84aa498f765519d6
    9 Nda54d9e0e16d483cb4f31c5225780cb5
    10 Ne6c7e37ccd1d402583f290f5d183d266
    11 Nebeceedf767c44f289cdfcc747d3e837
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N09436d429a7a467ebf599d03ce4e98c1
    15 schema:citation sg:pub.10.1038/3327
    16 sg:pub.10.1038/35076576
    17 sg:pub.10.1038/4434
    18 sg:pub.10.1038/73432
    19 sg:pub.10.1038/nbt0993-1026
    20 https://app.dimensions.ai/details/publication/pub.1074481978
    21 https://app.dimensions.ai/details/publication/pub.1078441835
    22 https://app.dimensions.ai/details/publication/pub.1082871296
    23 https://doi.org/10.1006/abio.2000.4889
    24 https://doi.org/10.1006/abio.2001.5564
    25 https://doi.org/10.1016/s0167-7799(01)01792-9
    26 https://doi.org/10.1016/s0168-1656(99)00163-7
    27 https://doi.org/10.1016/s0968-0004(99)01460-7
    28 https://doi.org/10.1073/pnas.161242998
    29 https://doi.org/10.1093/nar/21.16.3809
    30 https://doi.org/10.1093/nar/29.12.2549
    31 https://doi.org/10.1101/gr.6.10.986
    32 https://doi.org/10.1126/science.270.5235.467
    33 https://doi.org/10.1136/jmg.29.6.375
    34 https://doi.org/10.1152/physiolgenomics.00020.2001
    35 https://doi.org/10.1152/physiolgenomics.2000.2.3.143
    36 https://doi.org/10.1200/jco.1999.17.7.2264
    37 https://doi.org/10.1677/jme.0.0250169
    38 https://doi.org/10.2144/00292rv02
    39 schema:datePublished 2002-06
    40 schema:datePublishedReg 2002-06-01
    41 schema:description BACKGROUND: Gene-expression analysis is increasingly important in biological research, with real-time reverse transcription PCR (RT-PCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Given the increased sensitivity, reproducibility and large dynamic range of this methodology, the requirements for a proper internal control gene for normalization have become increasingly stringent. Although housekeeping gene expression has been reported to vary considerably, no systematic survey has properly determined the errors related to the common practice of using only one control gene, nor presented an adequate way of working around this problem. RESULTS: We outline a robust and innovative strategy to identify the most stably expressed control genes in a given set of tissues, and to determine the minimum number of genes required to calculate a reliable normalization factor. We have evaluated ten housekeeping genes from different abundance and functional classes in various human tissues, and demonstrated that the conventional use of a single gene for normalization leads to relatively large errors in a significant proportion of samples tested. The geometric mean of multiple carefully selected housekeeping genes was validated as an accurate normalization factor by analyzing publicly available microarray data. CONCLUSIONS: The normalization strategy presented here is a prerequisite for accurate RT-PCR expression profiling, which, among other things, opens up the possibility of studying the biological relevance of small expression differences.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N0567a46e2dec424c8492128c608df6d7
    46 Nc93079efdd8e40648ac8236c3da5f4eb
    47 sg:journal.1023439
    48 schema:name Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes
    49 schema:pagination research0034.1
    50 schema:productId N04344ea31f4f4f188d79874f8303531f
    51 N0e607943db724d6ea7800578d2da79bb
    52 N2eb28f6665f44452bc7a472ca2032cbd
    53 N754df4cbb10f4c22938844d3cd7398d3
    54 Nf42cd403a24a40cbb7f1a80d51cc6251
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
    56 https://doi.org/10.1186/gb-2002-3-7-research0034
    57 schema:sdDatePublished 2019-04-10T21:37
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher N5b708beb772544858ef00b39bfe5d446
    60 schema:url http://link.springer.com/10.1186%2Fgb-2002-3-7-research0034
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N03e8352cc01f4510a7ea5a1bef0a599e rdf:first sg:person.01217112307.19
    65 rdf:rest Ne510b10e30e34b63806794cb47eb2d0a
    66 N04344ea31f4f4f188d79874f8303531f schema:name doi
    67 schema:value 10.1186/gb-2002-3-7-research0034
    68 rdf:type schema:PropertyValue
    69 N0567a46e2dec424c8492128c608df6d7 schema:issueNumber 7
    70 rdf:type schema:PublicationIssue
    71 N09436d429a7a467ebf599d03ce4e98c1 rdf:first sg:person.0615166774.28
    72 rdf:rest N6143579bdf9844f3907b39e1aea3ecea
    73 N0e607943db724d6ea7800578d2da79bb schema:name nlm_unique_id
    74 schema:value 100960660
    75 rdf:type schema:PropertyValue
    76 N2eb28f6665f44452bc7a472ca2032cbd schema:name readcube_id
    77 schema:value bd5c48d375651692a896c6b7c1c4a8809579bfdd0fc893f21f661530313039f6
    78 rdf:type schema:PropertyValue
    79 N30039c6924b845ac808e798f075886df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Tumor Cells, Cultured
    81 rdf:type schema:DefinedTerm
    82 N4e6a6c429cef426d819d78891e6d6bf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Humans
    84 rdf:type schema:DefinedTerm
    85 N5b708beb772544858ef00b39bfe5d446 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 N6143579bdf9844f3907b39e1aea3ecea rdf:first sg:person.01213251551.72
    88 rdf:rest N8ebe65d3edb34f4eba296f77b8133d45
    89 N6a4903036ac847e983e5cc9cc8d13ee2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Female
    91 rdf:type schema:DefinedTerm
    92 N754df4cbb10f4c22938844d3cd7398d3 schema:name dimensions_id
    93 schema:value pub.1039751959
    94 rdf:type schema:PropertyValue
    95 N878dad5a62c44da2b586b16e9cc4f98d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name RNA
    97 rdf:type schema:DefinedTerm
    98 N88276359adb74beca096de80e43587bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Algorithms
    100 rdf:type schema:DefinedTerm
    101 N8ebe65d3edb34f4eba296f77b8133d45 rdf:first sg:person.01363016625.39
    102 rdf:rest Na5326d0ec8fe45baabddf8fed2430205
    103 N96800d23704f4058a1b763dfe4c8f799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Time Factors
    105 rdf:type schema:DefinedTerm
    106 N9caff0b9422848389294d68adf81ee64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Reproducibility of Results
    108 rdf:type schema:DefinedTerm
    109 Na5326d0ec8fe45baabddf8fed2430205 rdf:first sg:person.01204242653.58
    110 rdf:rest Ndc935c22675b4fbdbe5775f9c836d7f2
    111 Nc7273c7d3f2f4f6b84aa498f765519d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Gene Expression Profiling
    113 rdf:type schema:DefinedTerm
    114 Nc93079efdd8e40648ac8236c3da5f4eb schema:volumeNumber 3
    115 rdf:type schema:PublicationVolume
    116 Nda54d9e0e16d483cb4f31c5225780cb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name DNA, Complementary
    118 rdf:type schema:DefinedTerm
    119 Ndc935c22675b4fbdbe5775f9c836d7f2 rdf:first sg:person.0756500604.32
    120 rdf:rest N03e8352cc01f4510a7ea5a1bef0a599e
    121 Ne510b10e30e34b63806794cb47eb2d0a rdf:first sg:person.01115133072.27
    122 rdf:rest rdf:nil
    123 Ne6c7e37ccd1d402583f290f5d183d266 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Reverse Transcriptase Polymerase Chain Reaction
    125 rdf:type schema:DefinedTerm
    126 Nebeceedf767c44f289cdfcc747d3e837 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Reference Standards
    128 rdf:type schema:DefinedTerm
    129 Nf42cd403a24a40cbb7f1a80d51cc6251 schema:name pubmed_id
    130 schema:value 12184808
    131 rdf:type schema:PropertyValue
    132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Biological Sciences
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Genetics
    137 rdf:type schema:DefinedTerm
    138 sg:journal.1023439 schema:issn 1465-6906
    139 1474-760X
    140 schema:name Genome Biology
    141 rdf:type schema:Periodical
    142 sg:person.01115133072.27 schema:affiliation https://www.grid.ac/institutes/grid.410566.0
    143 schema:familyName Speleman
    144 schema:givenName Frank
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115133072.27
    146 rdf:type schema:Person
    147 sg:person.01204242653.58 schema:affiliation https://www.grid.ac/institutes/grid.410566.0
    148 schema:familyName Poppe
    149 schema:givenName Bruce
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204242653.58
    151 rdf:type schema:Person
    152 sg:person.01213251551.72 schema:affiliation https://www.grid.ac/institutes/grid.410566.0
    153 schema:familyName De Preter
    154 schema:givenName Katleen
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213251551.72
    156 rdf:type schema:Person
    157 sg:person.01217112307.19 schema:affiliation https://www.grid.ac/institutes/grid.410566.0
    158 schema:familyName De Paepe
    159 schema:givenName Anne
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217112307.19
    161 rdf:type schema:Person
    162 sg:person.01363016625.39 schema:affiliation https://www.grid.ac/institutes/grid.410566.0
    163 schema:familyName Pattyn
    164 schema:givenName Filip
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363016625.39
    166 rdf:type schema:Person
    167 sg:person.0615166774.28 schema:affiliation https://www.grid.ac/institutes/grid.410566.0
    168 schema:familyName Vandesompele
    169 schema:givenName Jo
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615166774.28
    171 rdf:type schema:Person
    172 sg:person.0756500604.32 schema:affiliation https://www.grid.ac/institutes/grid.410566.0
    173 schema:familyName Van Roy
    174 schema:givenName Nadine
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756500604.32
    176 rdf:type schema:Person
    177 sg:pub.10.1038/3327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011289709
    178 https://doi.org/10.1038/3327
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/35076576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027465054
    181 https://doi.org/10.1038/35076576
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/4434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012837556
    184 https://doi.org/10.1038/4434
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/73432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024393583
    187 https://doi.org/10.1038/73432
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nbt0993-1026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045863719
    190 https://doi.org/10.1038/nbt0993-1026
    191 rdf:type schema:CreativeWork
    192 https://app.dimensions.ai/details/publication/pub.1074481978 schema:CreativeWork
    193 https://app.dimensions.ai/details/publication/pub.1078441835 schema:CreativeWork
    194 https://app.dimensions.ai/details/publication/pub.1082871296 schema:CreativeWork
    195 https://doi.org/10.1006/abio.2000.4889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051610804
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1006/abio.2001.5564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005834355
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/s0167-7799(01)01792-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013560057
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/s0168-1656(99)00163-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000522703
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/s0968-0004(99)01460-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051595821
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1073/pnas.161242998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015842262
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1093/nar/21.16.3809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001282835
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1093/nar/29.12.2549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048626178
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1101/gr.6.10.986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018725591
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1136/jmg.29.6.375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033948722
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1152/physiolgenomics.00020.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063200382
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1152/physiolgenomics.2000.2.3.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074707686
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1200/jco.1999.17.7.2264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074549838
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1677/jme.0.0250169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020545562
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.2144/00292rv02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074686252
    226 rdf:type schema:CreativeWork
    227 https://www.grid.ac/institutes/grid.410566.0 schema:alternateName Ghent University Hospital
    228 schema:name Center for Medical Genetics, Ghent University Hospital 1K5, De Pintelaan 185, B-9000, Ghent, Belgium
    229 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...