Empirical characterization of the expression ratio noise structure in high-density oligonucleotide arrays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-04

AUTHORS

Felix Naef, Coleen R Hacker, Nila Patil, Marcelo Magnasco

ABSTRACT

BACKGROUND: High-density oligonucleotide arrays (HDONAs) are a powerful tool for assessing differential mRNA expression levels. To establish the statistical significance of an observed change in expression, one must take into account the noise introduced by the enzymatic and hybridization steps, called type I noise. We undertake an empirical characterization of the experimental repeatability of results by carrying out statistical analysis of a large number of duplicate HDONA experiments. RESULTS: We assign scoring functions for expression ratios and associated quality measures. Both the perfect-match (PM) probes and the differentials between PM and single-mismatch (MM) probes are considered as raw intensities. We then calculate the log-ratio of the noise structure using robust estimates of their intensity-dependent variance. The noise structure in the log-ratios follows a local log-normal distribution in both the PM and PM-MM cases. Significance relative to the type I noise can therefore be quantified reliably using the local standard deviation (SD). We discuss the intensity dependence of the SD and show that ratio scores greater than 1.25 are significant in the mid- to high-intensity range. CONCLUSIONS: The noise inherent in HDONAs is characteristically dependent on intensity and can be well described in terms of local normalization of log-ratio distributions. Therefore, robust estimates of the local SD of these distributions provide a simple and powerful way to assess significance (relative to type I noise) in differential gene expression, and will be helpful in practice for improving the reliability of predictions from hybridization experiments. More... »

PAGES

research0018.1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/gb-2002-3-4-research0018

DOI

http://dx.doi.org/10.1186/gb-2002-3-4-research0018

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042357940

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11983059


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistical Distributions", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rockefeller University", 
          "id": "https://www.grid.ac/institutes/grid.134907.8", 
          "name": [
            "Mathematical Physics Laboratory, Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Ave, 10021, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naef", 
        "givenName": "Felix", 
        "id": "sg:person.01320453016.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320453016.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Perlegen Sciences, Inc., 2021 Stierlin Court, 94043, Mountain View, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hacker", 
        "givenName": "Coleen R", 
        "id": "sg:person.0635325545.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635325545.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Perlegen Sciences, Inc., 2021 Stierlin Court, 94043, Mountain View, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patil", 
        "givenName": "Nila", 
        "id": "sg:person.0665122232.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665122232.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rockefeller University", 
          "id": "https://www.grid.ac/institutes/grid.134907.8", 
          "name": [
            "Mathematical Physics Laboratory, Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Ave, 10021, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magnasco", 
        "givenName": "Marcelo", 
        "id": "sg:person.01321161175.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321161175.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.091062498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001631710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.1.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005356386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-4644(20010201)80:2<192::aid-jcb50>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007967052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-8-research0032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015228558", 
          "https://doi.org/10.1186/gb-2001-2-8-research0032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-3-1-research0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020040410", 
          "https://doi.org/10.1186/gb-2001-3-1-research0005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.040902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022812277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.040902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022812277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)00015-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025640188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028135585", 
          "https://doi.org/10.1038/35015701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028135585", 
          "https://doi.org/10.1038/35015701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040686717", 
          "https://doi.org/10.1038/4447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040686717", 
          "https://doi.org/10.1038/4447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-12-research0055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043794296", 
          "https://doi.org/10.1186/gb-2001-2-12-research0055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.12.2549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048626178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270050514954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701300099074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.274.5287.610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554585"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04", 
    "datePublishedReg": "2002-04-01", 
    "description": "BACKGROUND: High-density oligonucleotide arrays (HDONAs) are a powerful tool for assessing differential mRNA expression levels. To establish the statistical significance of an observed change in expression, one must take into account the noise introduced by the enzymatic and hybridization steps, called type I noise. We undertake an empirical characterization of the experimental repeatability of results by carrying out statistical analysis of a large number of duplicate HDONA experiments.\nRESULTS: We assign scoring functions for expression ratios and associated quality measures. Both the perfect-match (PM) probes and the differentials between PM and single-mismatch (MM) probes are considered as raw intensities. We then calculate the log-ratio of the noise structure using robust estimates of their intensity-dependent variance. The noise structure in the log-ratios follows a local log-normal distribution in both the PM and PM-MM cases. Significance relative to the type I noise can therefore be quantified reliably using the local standard deviation (SD). We discuss the intensity dependence of the SD and show that ratio scores greater than 1.25 are significant in the mid- to high-intensity range.\nCONCLUSIONS: The noise inherent in HDONAs is characteristically dependent on intensity and can be well described in terms of local normalization of log-ratio distributions. Therefore, robust estimates of the local SD of these distributions provide a simple and powerful way to assess significance (relative to type I noise) in differential gene expression, and will be helpful in practice for improving the reliability of predictions from hybridization experiments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/gb-2002-3-4-research0018", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Empirical characterization of the expression ratio noise structure in high-density oligonucleotide arrays", 
    "pagination": "research0018.1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c9c4ff79e86d2fc7e31a241af5530c9231158651ade6b8760163b21f0e78bd6d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11983059"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/gb-2002-3-4-research0018"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042357940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/gb-2002-3-4-research0018", 
      "https://app.dimensions.ai/details/publication/pub.1042357940"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fgb-2002-3-4-research0018"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-4-research0018'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-4-research0018'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-4-research0018'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/gb-2002-3-4-research0018'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      52 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/gb-2002-3-4-research0018 schema:about N1015bd45c43f4496b90cdfeabc2cdae0
2 N4d8ec1bdb8fc44348920cf98301acc83
3 N4e1a230f37b046a39e4968a124ba5f9e
4 N71579600d0be46e98a578f40cd5652a9
5 N81f4a902a32d44288fea65db6785b602
6 N8b83d331405f4daaa9d1435179ae838d
7 Nb64770ebae174a14b3345c81b4089e9e
8 Nbd31b4fda59847299e9b33b73ec3b89e
9 Nf417929a0596499bbcad61634b0d817b
10 anzsrc-for:01
11 anzsrc-for:0104
12 schema:author N31e85bb5ef8b4e1cb7a24f07ebc09b1b
13 schema:citation sg:pub.10.1038/35015701
14 sg:pub.10.1038/4447
15 sg:pub.10.1186/gb-2001-2-12-research0055
16 sg:pub.10.1186/gb-2001-2-8-research0032
17 sg:pub.10.1186/gb-2001-3-1-research0005
18 https://doi.org/10.1002/1097-4644(20010201)80:2<192::aid-jcb50>3.0.co;2-w
19 https://doi.org/10.1016/s0092-8674(00)00015-5
20 https://doi.org/10.1073/pnas.091062498
21 https://doi.org/10.1073/pnas.98.1.31
22 https://doi.org/10.1089/10665270050514954
23 https://doi.org/10.1089/106652701300099074
24 https://doi.org/10.1093/nar/29.12.2549
25 https://doi.org/10.1103/physreve.65.040902
26 https://doi.org/10.1126/science.274.5287.610
27 schema:datePublished 2002-04
28 schema:datePublishedReg 2002-04-01
29 schema:description BACKGROUND: High-density oligonucleotide arrays (HDONAs) are a powerful tool for assessing differential mRNA expression levels. To establish the statistical significance of an observed change in expression, one must take into account the noise introduced by the enzymatic and hybridization steps, called type I noise. We undertake an empirical characterization of the experimental repeatability of results by carrying out statistical analysis of a large number of duplicate HDONA experiments. RESULTS: We assign scoring functions for expression ratios and associated quality measures. Both the perfect-match (PM) probes and the differentials between PM and single-mismatch (MM) probes are considered as raw intensities. We then calculate the log-ratio of the noise structure using robust estimates of their intensity-dependent variance. The noise structure in the log-ratios follows a local log-normal distribution in both the PM and PM-MM cases. Significance relative to the type I noise can therefore be quantified reliably using the local standard deviation (SD). We discuss the intensity dependence of the SD and show that ratio scores greater than 1.25 are significant in the mid- to high-intensity range. CONCLUSIONS: The noise inherent in HDONAs is characteristically dependent on intensity and can be well described in terms of local normalization of log-ratio distributions. Therefore, robust estimates of the local SD of these distributions provide a simple and powerful way to assess significance (relative to type I noise) in differential gene expression, and will be helpful in practice for improving the reliability of predictions from hybridization experiments.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N91580e580a5f4fc1ab6f38a0b21aef7f
34 Nb756c4de2829417a91d6aae414b605db
35 sg:journal.1023439
36 schema:name Empirical characterization of the expression ratio noise structure in high-density oligonucleotide arrays
37 schema:pagination research0018.1
38 schema:productId N2d422dd63bf54cc3803439cc56f4631c
39 N538c778072cc4184b20c57ce4713ac9a
40 Nc5aa1963c5a44171970a660ebb701305
41 Ncff82b85cf9141c080733a34f5124691
42 Nd1de2a6a18d34f2ba3549a02dc8107d5
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042357940
44 https://doi.org/10.1186/gb-2002-3-4-research0018
45 schema:sdDatePublished 2019-04-10T14:10
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N369506a13509434aab5ac5f76a3a5bb9
48 schema:url http://link.springer.com/10.1186%2Fgb-2002-3-4-research0018
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N1015bd45c43f4496b90cdfeabc2cdae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Oligonucleotide Array Sequence Analysis
54 rdf:type schema:DefinedTerm
55 N1172504d866b4fbeae881b45a543ab8a schema:name Perlegen Sciences, Inc., 2021 Stierlin Court, 94043, Mountain View, CA, USA
56 rdf:type schema:Organization
57 N2d422dd63bf54cc3803439cc56f4631c schema:name readcube_id
58 schema:value c9c4ff79e86d2fc7e31a241af5530c9231158651ade6b8760163b21f0e78bd6d
59 rdf:type schema:PropertyValue
60 N31e85bb5ef8b4e1cb7a24f07ebc09b1b rdf:first sg:person.01320453016.63
61 rdf:rest N44109354aecf4aba800a99f372765cb3
62 N369506a13509434aab5ac5f76a3a5bb9 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N44109354aecf4aba800a99f372765cb3 rdf:first sg:person.0635325545.44
65 rdf:rest Nb36164dc2f684c80af3b1d14ed4ecac8
66 N4d8ec1bdb8fc44348920cf98301acc83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name RNA, Messenger
68 rdf:type schema:DefinedTerm
69 N4e1a230f37b046a39e4968a124ba5f9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Sensitivity and Specificity
71 rdf:type schema:DefinedTerm
72 N538c778072cc4184b20c57ce4713ac9a schema:name pubmed_id
73 schema:value 11983059
74 rdf:type schema:PropertyValue
75 N71579600d0be46e98a578f40cd5652a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Gene Expression Profiling
77 rdf:type schema:DefinedTerm
78 N81f4a902a32d44288fea65db6785b602 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Humans
80 rdf:type schema:DefinedTerm
81 N8b83d331405f4daaa9d1435179ae838d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Statistical Distributions
83 rdf:type schema:DefinedTerm
84 N91580e580a5f4fc1ab6f38a0b21aef7f schema:issueNumber 4
85 rdf:type schema:PublicationIssue
86 Nb36164dc2f684c80af3b1d14ed4ecac8 rdf:first sg:person.0665122232.38
87 rdf:rest Nf9aac9149b314b58a394bba472766e8c
88 Nb64770ebae174a14b3345c81b4089e9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Animals
90 rdf:type schema:DefinedTerm
91 Nb756c4de2829417a91d6aae414b605db schema:volumeNumber 3
92 rdf:type schema:PublicationVolume
93 Nbd31b4fda59847299e9b33b73ec3b89e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Mice
95 rdf:type schema:DefinedTerm
96 Nc5aa1963c5a44171970a660ebb701305 schema:name dimensions_id
97 schema:value pub.1042357940
98 rdf:type schema:PropertyValue
99 Ncff82b85cf9141c080733a34f5124691 schema:name doi
100 schema:value 10.1186/gb-2002-3-4-research0018
101 rdf:type schema:PropertyValue
102 Nd1de2a6a18d34f2ba3549a02dc8107d5 schema:name nlm_unique_id
103 schema:value 100960660
104 rdf:type schema:PropertyValue
105 Nf417929a0596499bbcad61634b0d817b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Reproducibility of Results
107 rdf:type schema:DefinedTerm
108 Nf9aac9149b314b58a394bba472766e8c rdf:first sg:person.01321161175.90
109 rdf:rest rdf:nil
110 Nff4340bb77ba4e9bbece28ccfca56be3 schema:name Perlegen Sciences, Inc., 2021 Stierlin Court, 94043, Mountain View, CA, USA
111 rdf:type schema:Organization
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
116 schema:name Statistics
117 rdf:type schema:DefinedTerm
118 sg:journal.1023439 schema:issn 1465-6906
119 1474-760X
120 schema:name Genome Biology
121 rdf:type schema:Periodical
122 sg:person.01320453016.63 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
123 schema:familyName Naef
124 schema:givenName Felix
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320453016.63
126 rdf:type schema:Person
127 sg:person.01321161175.90 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
128 schema:familyName Magnasco
129 schema:givenName Marcelo
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321161175.90
131 rdf:type schema:Person
132 sg:person.0635325545.44 schema:affiliation Nff4340bb77ba4e9bbece28ccfca56be3
133 schema:familyName Hacker
134 schema:givenName Coleen R
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635325545.44
136 rdf:type schema:Person
137 sg:person.0665122232.38 schema:affiliation N1172504d866b4fbeae881b45a543ab8a
138 schema:familyName Patil
139 schema:givenName Nila
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665122232.38
141 rdf:type schema:Person
142 sg:pub.10.1038/35015701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028135585
143 https://doi.org/10.1038/35015701
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/4447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040686717
146 https://doi.org/10.1038/4447
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/gb-2001-2-12-research0055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043794296
149 https://doi.org/10.1186/gb-2001-2-12-research0055
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/gb-2001-2-8-research0032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015228558
152 https://doi.org/10.1186/gb-2001-2-8-research0032
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/gb-2001-3-1-research0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020040410
155 https://doi.org/10.1186/gb-2001-3-1-research0005
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/1097-4644(20010201)80:2<192::aid-jcb50>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1007967052
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0092-8674(00)00015-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025640188
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.091062498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001631710
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.98.1.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005356386
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1089/10665270050514954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204847
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1089/106652701300099074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204871
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/nar/29.12.2549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048626178
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreve.65.040902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022812277
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.274.5287.610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554585
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.134907.8 schema:alternateName Rockefeller University
176 schema:name Mathematical Physics Laboratory, Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Ave, 10021, NY, USA
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...