Mortality prediction using SAPS II: an update for French intensive care units View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-10-06

AUTHORS

Jean Roger Le Gall, Anke Neumann, François Hemery, Jean Pierre Bleriot, Jean Pierre Fulgencio, Bernard Garrigues, Christian Gouzes, Eric Lepage, Pierre Moine, Daniel Villers

ABSTRACT

INTRODUCTION: The standardized mortality ratio (SMR) is commonly used for benchmarking intensive care units (ICUs). Available mortality prediction models are outdated and must be adapted to current populations of interest. The objective of this study was to improve the Simplified Acute Physiology Score (SAPS) II for mortality prediction in ICUs, thereby improving SMR estimates. METHOD: A retrospective data base study was conducted in patients hospitalized in 106 French ICUs between 1 January 1998 and 31 December 1999. A total of 77,490 evaluable admissions were split into a training set and a validation set. Calibration and discrimination were determined for the original SAPS II, a customized SAPS II and an expanded SAPS II developed in the training set by adding six admission variables: age, sex, length of pre-ICU hospital stay, patient location before ICU, clinical category and whether drug overdose was present. The training set was used for internal validation and the validation set for external validation. RESULTS: With the original SAPS II calibration was poor, with marked underestimation of observed mortality, whereas discrimination was good (area under the receiver operating characteristic curve 0.858). Customization improved calibration but had poor uniformity of fit; discrimination was unchanged. The expanded SAPS II exhibited good calibration, good uniformity of fit and better discrimination (area under the receiver operating characteristic curve 0.879). The SMR in the validation set was 1.007 (confidence interval 0.985-1.028). Some ICUs had better and others worse performance with the expanded SAPS II than with the customized SAPS II. CONCLUSION: The original SAPS II model did not perform sufficiently well to be useful for benchmarking in France. Customization improved the statistical qualities of the model but gave poor uniformity of fit. Adding simple variables to create an expanded SAPS II model led to better calibration, discrimination and uniformity of fit, producing a tool suitable for benchmarking. More... »

PAGES

r645-r652

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/cc3821

DOI

http://dx.doi.org/10.1186/cc3821

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053128548

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16280063


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Benchmarking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forecasting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospital Mortality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intensive Care Units", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Professor, head of the unit of Medical intensive, H\u00f4pital Saint Louis, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "Professor, head of the unit of Medical intensive, H\u00f4pital Saint Louis, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Gall", 
        "givenName": "Jean Roger", 
        "id": "sg:person.0610033717.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610033717.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Statistician, D\u00e9l\u00e9gation \u00e0 l'Information M\u00e9dicale et Epid\u00e9miologie, AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "Statistician, D\u00e9l\u00e9gation \u00e0 l'Information M\u00e9dicale et Epid\u00e9miologie, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Anke", 
        "id": "sg:person.01222442661.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222442661.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Statistician, center of Biostatistique M\u00e9dicale, H\u00f4pital Henri Mondor, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.412116.1", 
          "name": [
            "Statistician, center of Biostatistique M\u00e9dicale, H\u00f4pital Henri Mondor, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemery", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.0646375764.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646375764.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delegate to the Minist\u00e8re de la Sant\u00e9, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.418199.c", 
          "name": [
            "Delegate to the Minist\u00e8re de la Sant\u00e9, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bleriot", 
        "givenName": "Jean Pierre", 
        "id": "sg:person.016455510764.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016455510764.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesth\u00e9sie R\u00e9animation, H\u00f4pital Tenon, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Anesth\u00e9sie R\u00e9animation, H\u00f4pital Tenon, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fulgencio", 
        "givenName": "Jean Pierre", 
        "id": "sg:person.0616325711.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616325711.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Professor, head of the unit of multidisciplinary internsive care, Centre hospitalier du Pays d'Aix, Aix en Provence, France", 
          "id": "http://www.grid.ac/institutes/grid.489907.b", 
          "name": [
            "Professor, head of the unit of multidisciplinary internsive care, Centre hospitalier du Pays d'Aix, Aix en Provence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garrigues", 
        "givenName": "Bernard", 
        "id": "sg:person.0671724222.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671724222.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Epidemiologist, Information M\u00e9dicale, H\u00f4pital de Nimes, Nimes, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Epidemiologist, Information M\u00e9dicale, H\u00f4pital de Nimes, Nimes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gouzes", 
        "givenName": "Christian", 
        "id": "sg:person.01305337170.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305337170.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Professor, Head of the D\u00e9l\u00e9gation \u00e0 l'Information M\u00e9dicale et Epid\u00e9miologie, AP-HP, Paris, and of the center of Biostatistique M\u00e9dicale, H\u00f4pital Henri Mondor, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "Professor, Head of the D\u00e9l\u00e9gation \u00e0 l'Information M\u00e9dicale et Epid\u00e9miologie, AP-HP, Paris, and of the center of Biostatistique M\u00e9dicale, H\u00f4pital Henri Mondor, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lepage", 
        "givenName": "Eric", 
        "id": "sg:person.01067513041.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067513041.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology, University of Colorado Health Science Center, Denver, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.241116.1", 
          "name": [
            "Department of Anesthesiology, University of Colorado Health Science Center, Denver, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moine", 
        "givenName": "Pierre", 
        "id": "sg:person.0711031046.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711031046.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Professor, Head of the unit of Medical intensive care, H\u00f4pital de l'Hotel Dieu, Nantes, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Professor, Head of the unit of Medical intensive care, H\u00f4pital de l'Hotel Dieu, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villers", 
        "givenName": "Daniel", 
        "id": "sg:person.01237413435.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237413435.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s001340000638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017529552", 
          "https://doi.org/10.1007/s001340000638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-005-2762-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014083489", 
          "https://doi.org/10.1007/s00134-005-2762-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-10-06", 
    "datePublishedReg": "2005-10-06", 
    "description": "INTRODUCTION: The standardized mortality ratio (SMR) is commonly used for benchmarking intensive care units (ICUs). Available mortality prediction models are outdated and must be adapted to current populations of interest. The objective of this study was to improve the Simplified Acute Physiology Score (SAPS) II for mortality prediction in ICUs, thereby improving SMR estimates.\nMETHOD: A retrospective data base study was conducted in patients hospitalized in 106 French ICUs between 1 January 1998 and 31 December 1999. A total of 77,490 evaluable admissions were split into a training set and a validation set. Calibration and discrimination were determined for the original SAPS II, a customized SAPS II and an expanded SAPS II developed in the training set by adding six admission variables: age, sex, length of pre-ICU hospital stay, patient location before ICU, clinical category and whether drug overdose was present. The training set was used for internal validation and the validation set for external validation.\nRESULTS: With the original SAPS II calibration was poor, with marked underestimation of observed mortality, whereas discrimination was good (area under the receiver operating characteristic curve 0.858). Customization improved calibration but had poor uniformity of fit; discrimination was unchanged. The expanded SAPS II exhibited good calibration, good uniformity of fit and better discrimination (area under the receiver operating characteristic curve 0.879). The SMR in the validation set was 1.007 (confidence interval 0.985-1.028). Some ICUs had better and others worse performance with the expanded SAPS II than with the customized SAPS II.\nCONCLUSION: The original SAPS II model did not perform sufficiently well to be useful for benchmarking in France. Customization improved the statistical qualities of the model but gave poor uniformity of fit. Adding simple variables to create an expanded SAPS II model led to better calibration, discrimination and uniformity of fit, producing a tool suitable for benchmarking.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/cc3821", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1117766", 
        "issn": [
          "1364-8535", 
          "1466-609X"
        ], 
        "name": "Critical Care", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "intensive care unit", 
      "standardized mortality ratio", 
      "French intensive care units", 
      "SAPS II model", 
      "SAPS II", 
      "care unit", 
      "mortality prediction", 
      "Simplified Acute Physiology Score II", 
      "pre-ICU hospital stay", 
      "Acute Physiology Score II", 
      "original SAPS II model", 
      "original SAPS II", 
      "uniformity of fit", 
      "mortality prediction model", 
      "data base study", 
      "good calibration", 
      "evaluable admissions", 
      "Score II", 
      "hospital stay", 
      "drug overdose", 
      "mortality ratio", 
      "clinical categories", 
      "observed mortality", 
      "SMR estimates", 
      "patient location", 
      "validation set", 
      "internal validation", 
      "marked underestimation", 
      "admission variables", 
      "external validation", 
      "base study", 
      "good discrimination", 
      "simple variables", 
      "patients", 
      "admission", 
      "stay", 
      "overdose", 
      "mortality", 
      "age", 
      "sex", 
      "total", 
      "study", 
      "worse performance", 
      "population", 
      "discrimination", 
      "variables", 
      "units", 
      "training", 
      "validation", 
      "update", 
      "objective", 
      "categories", 
      "quality", 
      "model", 
      "underestimation", 
      "prediction model", 
      "ratio", 
      "length", 
      "current population", 
      "location", 
      "tool", 
      "France", 
      "training set", 
      "interest", 
      "estimates", 
      "fit", 
      "prediction", 
      "poor uniformity", 
      "set", 
      "uniformity", 
      "performance", 
      "calibration", 
      "customization", 
      "statistical quality", 
      "good uniformity", 
      "Available mortality prediction models", 
      "Physiology Score (SAPS) II", 
      "retrospective data base study", 
      "original SAPS II calibration", 
      "SAPS II calibration", 
      "II calibration", 
      "II model"
    ], 
    "name": "Mortality prediction using SAPS II: an update for French intensive care units", 
    "pagination": "r645-r652", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053128548"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/cc3821"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16280063"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/cc3821", 
      "https://app.dimensions.ai/details/publication/pub.1053128548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_408.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/cc3821"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/cc3821'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/cc3821'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/cc3821'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/cc3821'


 

This table displays all metadata directly associated to this object as RDF triples.

296 TRIPLES      22 PREDICATES      124 URIs      114 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/cc3821 schema:about N2663af3da4624b0ebcec9a7a75fa677c
2 N2f0f70852e7d4b0489462095b656b34c
3 N34bbdf9a3c5d44da8329ce4af09ff8af
4 N35f2ce9f18014dde9305440c11f89a1c
5 N3ab68175df524d2fabc8523654d82f99
6 N7839cecc97764c8f839dc8a2ec044ed3
7 N926a5772a3604ef58da06cd6b60b124e
8 N9cfcaee961d44f7285cf04c18727568d
9 Nbee566c1cc65491297e1682d730eeda9
10 Nc289f8f550da44eead35d606331b523e
11 Nca6b9afed1a44935984a16ca1607dc31
12 Nd404b41c9c534ad6aaab5402aad6bc32
13 Ne1a3c9499ba74dc585b09e527bc2e872
14 Ne4aee78dd41c4f649b08ac0e9b6442cb
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author Nd4842b760554488ca5142a521d2dbf6e
18 schema:citation sg:pub.10.1007/s00134-005-2762-6
19 sg:pub.10.1007/s001340000638
20 schema:datePublished 2005-10-06
21 schema:datePublishedReg 2005-10-06
22 schema:description INTRODUCTION: The standardized mortality ratio (SMR) is commonly used for benchmarking intensive care units (ICUs). Available mortality prediction models are outdated and must be adapted to current populations of interest. The objective of this study was to improve the Simplified Acute Physiology Score (SAPS) II for mortality prediction in ICUs, thereby improving SMR estimates. METHOD: A retrospective data base study was conducted in patients hospitalized in 106 French ICUs between 1 January 1998 and 31 December 1999. A total of 77,490 evaluable admissions were split into a training set and a validation set. Calibration and discrimination were determined for the original SAPS II, a customized SAPS II and an expanded SAPS II developed in the training set by adding six admission variables: age, sex, length of pre-ICU hospital stay, patient location before ICU, clinical category and whether drug overdose was present. The training set was used for internal validation and the validation set for external validation. RESULTS: With the original SAPS II calibration was poor, with marked underestimation of observed mortality, whereas discrimination was good (area under the receiver operating characteristic curve 0.858). Customization improved calibration but had poor uniformity of fit; discrimination was unchanged. The expanded SAPS II exhibited good calibration, good uniformity of fit and better discrimination (area under the receiver operating characteristic curve 0.879). The SMR in the validation set was 1.007 (confidence interval 0.985-1.028). Some ICUs had better and others worse performance with the expanded SAPS II than with the customized SAPS II. CONCLUSION: The original SAPS II model did not perform sufficiently well to be useful for benchmarking in France. Customization improved the statistical qualities of the model but gave poor uniformity of fit. Adding simple variables to create an expanded SAPS II model led to better calibration, discrimination and uniformity of fit, producing a tool suitable for benchmarking.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N0ecd835e33ab4396a9dfa51838548d7a
27 N79b3838cfe3a44308952d5a579242281
28 sg:journal.1117766
29 schema:keywords Acute Physiology Score II
30 Available mortality prediction models
31 France
32 French intensive care units
33 II calibration
34 II model
35 Physiology Score (SAPS) II
36 SAPS II
37 SAPS II calibration
38 SAPS II model
39 SMR estimates
40 Score II
41 Simplified Acute Physiology Score II
42 admission
43 admission variables
44 age
45 base study
46 calibration
47 care unit
48 categories
49 clinical categories
50 current population
51 customization
52 data base study
53 discrimination
54 drug overdose
55 estimates
56 evaluable admissions
57 external validation
58 fit
59 good calibration
60 good discrimination
61 good uniformity
62 hospital stay
63 intensive care unit
64 interest
65 internal validation
66 length
67 location
68 marked underestimation
69 model
70 mortality
71 mortality prediction
72 mortality prediction model
73 mortality ratio
74 objective
75 observed mortality
76 original SAPS II
77 original SAPS II calibration
78 original SAPS II model
79 overdose
80 patient location
81 patients
82 performance
83 poor uniformity
84 population
85 pre-ICU hospital stay
86 prediction
87 prediction model
88 quality
89 ratio
90 retrospective data base study
91 set
92 sex
93 simple variables
94 standardized mortality ratio
95 statistical quality
96 stay
97 study
98 tool
99 total
100 training
101 training set
102 underestimation
103 uniformity
104 uniformity of fit
105 units
106 update
107 validation
108 validation set
109 variables
110 worse performance
111 schema:name Mortality prediction using SAPS II: an update for French intensive care units
112 schema:pagination r645-r652
113 schema:productId N51281a44c252416d843b9bad80645a6a
114 Nc0484156417e4645aa195dec84bcf318
115 Nddd192459e584ab3a3b88f025611ac10
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053128548
117 https://doi.org/10.1186/cc3821
118 schema:sdDatePublished 2022-01-01T18:15
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher N8e0798e7342341158a471ea5b99ca1c2
121 schema:url https://doi.org/10.1186/cc3821
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N029febf92a32449f9cc675021938468c rdf:first sg:person.0616325711.75
126 rdf:rest Na469b59310ad4ae5ae348b7870943f87
127 N086707b4883d4f79b7531352e1c98ee6 rdf:first sg:person.016455510764.29
128 rdf:rest N029febf92a32449f9cc675021938468c
129 N0ecd835e33ab4396a9dfa51838548d7a schema:volumeNumber 9
130 rdf:type schema:PublicationVolume
131 N2663af3da4624b0ebcec9a7a75fa677c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Humans
133 rdf:type schema:DefinedTerm
134 N2f0f70852e7d4b0489462095b656b34c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Models, Statistical
136 rdf:type schema:DefinedTerm
137 N34bbdf9a3c5d44da8329ce4af09ff8af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Female
139 rdf:type schema:DefinedTerm
140 N35f2ce9f18014dde9305440c11f89a1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Retrospective Studies
142 rdf:type schema:DefinedTerm
143 N3ab68175df524d2fabc8523654d82f99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Hospital Mortality
145 rdf:type schema:DefinedTerm
146 N4068b805516f4f87b49d5353ed6442ec rdf:first sg:person.01305337170.81
147 rdf:rest N7e26b56203b24e9dbe2cf1fa8af761bb
148 N51281a44c252416d843b9bad80645a6a schema:name doi
149 schema:value 10.1186/cc3821
150 rdf:type schema:PropertyValue
151 N71ad245af4e449ada0a3df33c0005236 rdf:first sg:person.01237413435.63
152 rdf:rest rdf:nil
153 N7839cecc97764c8f839dc8a2ec044ed3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Intensive Care Units
155 rdf:type schema:DefinedTerm
156 N79b3838cfe3a44308952d5a579242281 schema:issueNumber 6
157 rdf:type schema:PublicationIssue
158 N7e26b56203b24e9dbe2cf1fa8af761bb rdf:first sg:person.01067513041.01
159 rdf:rest N81f09228ec48466fb0b6ac1c95f2b10d
160 N81f09228ec48466fb0b6ac1c95f2b10d rdf:first sg:person.0711031046.17
161 rdf:rest N71ad245af4e449ada0a3df33c0005236
162 N870b8a19ace44afdbbeddc5e315b7da3 rdf:first sg:person.0646375764.46
163 rdf:rest N086707b4883d4f79b7531352e1c98ee6
164 N8e0798e7342341158a471ea5b99ca1c2 schema:name Springer Nature - SN SciGraph project
165 rdf:type schema:Organization
166 N926a5772a3604ef58da06cd6b60b124e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Forecasting
168 rdf:type schema:DefinedTerm
169 N9cfcaee961d44f7285cf04c18727568d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name ROC Curve
171 rdf:type schema:DefinedTerm
172 Na469b59310ad4ae5ae348b7870943f87 rdf:first sg:person.0671724222.60
173 rdf:rest N4068b805516f4f87b49d5353ed6442ec
174 Nbee566c1cc65491297e1682d730eeda9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Benchmarking
176 rdf:type schema:DefinedTerm
177 Nc0484156417e4645aa195dec84bcf318 schema:name dimensions_id
178 schema:value pub.1053128548
179 rdf:type schema:PropertyValue
180 Nc289f8f550da44eead35d606331b523e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name France
182 rdf:type schema:DefinedTerm
183 Nca6b9afed1a44935984a16ca1607dc31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Adult
185 rdf:type schema:DefinedTerm
186 Nd404b41c9c534ad6aaab5402aad6bc32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Reproducibility of Results
188 rdf:type schema:DefinedTerm
189 Nd4842b760554488ca5142a521d2dbf6e rdf:first sg:person.0610033717.23
190 rdf:rest Nfe00942e2e1a4d299f2510359cb25f5d
191 Nddd192459e584ab3a3b88f025611ac10 schema:name pubmed_id
192 schema:value 16280063
193 rdf:type schema:PropertyValue
194 Ne1a3c9499ba74dc585b09e527bc2e872 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Middle Aged
196 rdf:type schema:DefinedTerm
197 Ne4aee78dd41c4f649b08ac0e9b6442cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Male
199 rdf:type schema:DefinedTerm
200 Nfe00942e2e1a4d299f2510359cb25f5d rdf:first sg:person.01222442661.26
201 rdf:rest N870b8a19ace44afdbbeddc5e315b7da3
202 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
203 schema:name Medical and Health Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
206 schema:name Clinical Sciences
207 rdf:type schema:DefinedTerm
208 sg:journal.1117766 schema:issn 1364-8535
209 1466-609X
210 schema:name Critical Care
211 schema:publisher Springer Nature
212 rdf:type schema:Periodical
213 sg:person.01067513041.01 schema:affiliation grid-institutes:grid.50550.35
214 schema:familyName Lepage
215 schema:givenName Eric
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067513041.01
217 rdf:type schema:Person
218 sg:person.01222442661.26 schema:affiliation grid-institutes:grid.50550.35
219 schema:familyName Neumann
220 schema:givenName Anke
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222442661.26
222 rdf:type schema:Person
223 sg:person.01237413435.63 schema:affiliation grid-institutes:None
224 schema:familyName Villers
225 schema:givenName Daniel
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237413435.63
227 rdf:type schema:Person
228 sg:person.01305337170.81 schema:affiliation grid-institutes:None
229 schema:familyName Gouzes
230 schema:givenName Christian
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305337170.81
232 rdf:type schema:Person
233 sg:person.016455510764.29 schema:affiliation grid-institutes:grid.418199.c
234 schema:familyName Bleriot
235 schema:givenName Jean Pierre
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016455510764.29
237 rdf:type schema:Person
238 sg:person.0610033717.23 schema:affiliation grid-institutes:grid.413328.f
239 schema:familyName Le Gall
240 schema:givenName Jean Roger
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610033717.23
242 rdf:type schema:Person
243 sg:person.0616325711.75 schema:affiliation grid-institutes:grid.413483.9
244 schema:familyName Fulgencio
245 schema:givenName Jean Pierre
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616325711.75
247 rdf:type schema:Person
248 sg:person.0646375764.46 schema:affiliation grid-institutes:grid.412116.1
249 schema:familyName Hemery
250 schema:givenName François
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646375764.46
252 rdf:type schema:Person
253 sg:person.0671724222.60 schema:affiliation grid-institutes:grid.489907.b
254 schema:familyName Garrigues
255 schema:givenName Bernard
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671724222.60
257 rdf:type schema:Person
258 sg:person.0711031046.17 schema:affiliation grid-institutes:grid.241116.1
259 schema:familyName Moine
260 schema:givenName Pierre
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711031046.17
262 rdf:type schema:Person
263 sg:pub.10.1007/s00134-005-2762-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014083489
264 https://doi.org/10.1007/s00134-005-2762-6
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s001340000638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017529552
267 https://doi.org/10.1007/s001340000638
268 rdf:type schema:CreativeWork
269 grid-institutes:None schema:alternateName Epidemiologist, Information Médicale, Hôpital de Nimes, Nimes, France
270 Professor, Head of the unit of Medical intensive care, Hôpital de l'Hotel Dieu, Nantes, France
271 schema:name Epidemiologist, Information Médicale, Hôpital de Nimes, Nimes, France
272 Professor, Head of the unit of Medical intensive care, Hôpital de l'Hotel Dieu, Nantes, France
273 rdf:type schema:Organization
274 grid-institutes:grid.241116.1 schema:alternateName Department of Anesthesiology, University of Colorado Health Science Center, Denver, Colorado, USA
275 schema:name Department of Anesthesiology, University of Colorado Health Science Center, Denver, Colorado, USA
276 rdf:type schema:Organization
277 grid-institutes:grid.412116.1 schema:alternateName Statistician, center of Biostatistique Médicale, Hôpital Henri Mondor, Créteil, France
278 schema:name Statistician, center of Biostatistique Médicale, Hôpital Henri Mondor, Créteil, France
279 rdf:type schema:Organization
280 grid-institutes:grid.413328.f schema:alternateName Professor, head of the unit of Medical intensive, Hôpital Saint Louis, Paris, France
281 schema:name Professor, head of the unit of Medical intensive, Hôpital Saint Louis, Paris, France
282 rdf:type schema:Organization
283 grid-institutes:grid.413483.9 schema:alternateName Department of Anesthésie Réanimation, Hôpital Tenon, Paris, France
284 schema:name Department of Anesthésie Réanimation, Hôpital Tenon, Paris, France
285 rdf:type schema:Organization
286 grid-institutes:grid.418199.c schema:alternateName Delegate to the Ministère de la Santé, Paris, France
287 schema:name Delegate to the Ministère de la Santé, Paris, France
288 rdf:type schema:Organization
289 grid-institutes:grid.489907.b schema:alternateName Professor, head of the unit of multidisciplinary internsive care, Centre hospitalier du Pays d'Aix, Aix en Provence, France
290 schema:name Professor, head of the unit of multidisciplinary internsive care, Centre hospitalier du Pays d'Aix, Aix en Provence, France
291 rdf:type schema:Organization
292 grid-institutes:grid.50550.35 schema:alternateName Professor, Head of the Délégation à l'Information Médicale et Epidémiologie, AP-HP, Paris, and of the center of Biostatistique Médicale, Hôpital Henri Mondor, Créteil, France
293 Statistician, Délégation à l'Information Médicale et Epidémiologie, AP-HP, Paris, France
294 schema:name Professor, Head of the Délégation à l'Information Médicale et Epidémiologie, AP-HP, Paris, and of the center of Biostatistique Médicale, Hôpital Henri Mondor, Créteil, France
295 Statistician, Délégation à l'Information Médicale et Epidémiologie, AP-HP, Paris, France
296 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...