Statistics review 1: Presenting and summarising data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-02

AUTHORS

Elise Whitley, Jonathan Ball

ABSTRACT

The present review is the first in an ongoing guide to medical statistics, using specific examples from intensive care. The first step in any analysis is to describe and summarize the data. As well as becoming familiar with the data, this is also an opportunity to look for unusually high or low values (outliers), to check the assumptions required for statistical tests, and to decide the best way to categorize the data if this is necessary. In addition to tables and graphs, summary values are a convenient way to summarize large amounts of information. This review introduces some of these measures. It describes and gives examples of qualitative data (unordered and ordered) and quantitative data (discrete and continuous); how these types of data can be represented figuratively; the two important features of a quantitative dataset (location and variability); the measures of location (mean, median and mode); the measures of variability (range, interquartile range, standard deviation and variance); common distributions of clinical data; and simple transformations of positively skewed data. More... »

PAGES

66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/cc1455

DOI

http://dx.doi.org/10.1186/cc1455

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051605494

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11940268


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Critical Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemoglobins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intensive Care Units", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistical Distributions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urea", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bristol", 
          "id": "https://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "Lecturer in Medical Statistics, University of Bristol, Bristol, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whitley", 
        "givenName": "Elise", 
        "id": "sg:person.01054735411.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054735411.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St George's, University of London", 
          "id": "https://www.grid.ac/institutes/grid.264200.2", 
          "name": [
            "Lecturer in Intensive Care Medicine, St George's Hospital Medical School, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ball", 
        "givenName": "Jonathan", 
        "id": "sg:person.01126614244.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126614244.39"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-02", 
    "datePublishedReg": "2001-02-01", 
    "description": "The present review is the first in an ongoing guide to medical statistics, using specific examples from intensive care. The first step in any analysis is to describe and summarize the data. As well as becoming familiar with the data, this is also an opportunity to look for unusually high or low values (outliers), to check the assumptions required for statistical tests, and to decide the best way to categorize the data if this is necessary. In addition to tables and graphs, summary values are a convenient way to summarize large amounts of information. This review introduces some of these measures. It describes and gives examples of qualitative data (unordered and ordered) and quantitative data (discrete and continuous); how these types of data can be represented figuratively; the two important features of a quantitative dataset (location and variability); the measures of location (mean, median and mode); the measures of variability (range, interquartile range, standard deviation and variance); common distributions of clinical data; and simple transformations of positively skewed data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/cc1455", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1117766", 
        "issn": [
          "1364-8535", 
          "1466-609X"
        ], 
        "name": "Critical Care", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Statistics review 1: Presenting and summarising data", 
    "pagination": "66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f5d29f3ea50e27bb34d8b3e142ec5d16e474a7a11189f4d1a825ae7221d46efc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11940268"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9801902"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/cc1455"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051605494"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/cc1455", 
      "https://app.dimensions.ai/details/publication/pub.1051605494"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fcc1455"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/cc1455'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/cc1455'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/cc1455'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/cc1455'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      20 PREDICATES      39 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/cc1455 schema:about N45113adb95d84fd8bad443d9b28b8b34
2 N4d0a4462aa02400bb3b875bf72d6e981
3 N7081f1999d7c4278997d2c48f2b6b8ac
4 N7979e77f4a244c8b9b3906430b3a4108
5 N9205acad4a754741bc34cbbc991f46b6
6 Nc1c9a0be0bf844c4b0cbab4a6423dd26
7 Nd0fd753d3fd447eabbb730aac447e17c
8 Neea115971b054dd2868a14550233e343
9 Nf045da3b974d4f1492f6e792b5ff95c2
10 Nf31785ec4b434c1da21d19319b18d5f2
11 anzsrc-for:01
12 anzsrc-for:0104
13 schema:author N0bcfbfd888f7436d9533acfd85efd893
14 schema:datePublished 2001-02
15 schema:datePublishedReg 2001-02-01
16 schema:description The present review is the first in an ongoing guide to medical statistics, using specific examples from intensive care. The first step in any analysis is to describe and summarize the data. As well as becoming familiar with the data, this is also an opportunity to look for unusually high or low values (outliers), to check the assumptions required for statistical tests, and to decide the best way to categorize the data if this is necessary. In addition to tables and graphs, summary values are a convenient way to summarize large amounts of information. This review introduces some of these measures. It describes and gives examples of qualitative data (unordered and ordered) and quantitative data (discrete and continuous); how these types of data can be represented figuratively; the two important features of a quantitative dataset (location and variability); the measures of location (mean, median and mode); the measures of variability (range, interquartile range, standard deviation and variance); common distributions of clinical data; and simple transformations of positively skewed data.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N7771f828c1f84a64be7ebd7bce56481b
21 Nc839c09b2ee64bda8d73e5f82ca659a8
22 sg:journal.1117766
23 schema:name Statistics review 1: Presenting and summarising data
24 schema:pagination 66
25 schema:productId N2aa1739f585b4a82beb93ec610b7e8fa
26 N61ef86ed61f6456dac3f9ae12cef4c45
27 N8664761d1f5642b78b3733fc4b530f86
28 N931a5e0fa9fd47bd8f4776bfa479a96c
29 Na15d00d231b147f1bffeb23ea65ff6a5
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051605494
31 https://doi.org/10.1186/cc1455
32 schema:sdDatePublished 2019-04-10T23:25
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N37f93d0b9576432fb8ba13d0ebeacbcd
35 schema:url http://link.springer.com/10.1186%2Fcc1455
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0bcfbfd888f7436d9533acfd85efd893 rdf:first sg:person.01054735411.19
40 rdf:rest N1d821735415f4be4acd3f625509df8c4
41 N1d821735415f4be4acd3f625509df8c4 rdf:first sg:person.01126614244.39
42 rdf:rest rdf:nil
43 N2aa1739f585b4a82beb93ec610b7e8fa schema:name readcube_id
44 schema:value f5d29f3ea50e27bb34d8b3e142ec5d16e474a7a11189f4d1a825ae7221d46efc
45 rdf:type schema:PropertyValue
46 N37f93d0b9576432fb8ba13d0ebeacbcd schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N45113adb95d84fd8bad443d9b28b8b34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
49 schema:name Hydrogen-Ion Concentration
50 rdf:type schema:DefinedTerm
51 N4d0a4462aa02400bb3b875bf72d6e981 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Statistical Distributions
53 rdf:type schema:DefinedTerm
54 N61ef86ed61f6456dac3f9ae12cef4c45 schema:name dimensions_id
55 schema:value pub.1051605494
56 rdf:type schema:PropertyValue
57 N7081f1999d7c4278997d2c48f2b6b8ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Models, Statistical
59 rdf:type schema:DefinedTerm
60 N7771f828c1f84a64be7ebd7bce56481b schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N7979e77f4a244c8b9b3906430b3a4108 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Statistics as Topic
64 rdf:type schema:DefinedTerm
65 N8664761d1f5642b78b3733fc4b530f86 schema:name doi
66 schema:value 10.1186/cc1455
67 rdf:type schema:PropertyValue
68 N9205acad4a754741bc34cbbc991f46b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Intensive Care Units
70 rdf:type schema:DefinedTerm
71 N931a5e0fa9fd47bd8f4776bfa479a96c schema:name nlm_unique_id
72 schema:value 9801902
73 rdf:type schema:PropertyValue
74 Na15d00d231b147f1bffeb23ea65ff6a5 schema:name pubmed_id
75 schema:value 11940268
76 rdf:type schema:PropertyValue
77 Nc1c9a0be0bf844c4b0cbab4a6423dd26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Hemoglobins
79 rdf:type schema:DefinedTerm
80 Nc839c09b2ee64bda8d73e5f82ca659a8 schema:volumeNumber 6
81 rdf:type schema:PublicationVolume
82 Nd0fd753d3fd447eabbb730aac447e17c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Critical Care
84 rdf:type schema:DefinedTerm
85 Neea115971b054dd2868a14550233e343 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Analysis of Variance
87 rdf:type schema:DefinedTerm
88 Nf045da3b974d4f1492f6e792b5ff95c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Urea
90 rdf:type schema:DefinedTerm
91 Nf31785ec4b434c1da21d19319b18d5f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:journal.1117766 schema:issn 1364-8535
101 1466-609X
102 schema:name Critical Care
103 rdf:type schema:Periodical
104 sg:person.01054735411.19 schema:affiliation https://www.grid.ac/institutes/grid.5337.2
105 schema:familyName Whitley
106 schema:givenName Elise
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054735411.19
108 rdf:type schema:Person
109 sg:person.01126614244.39 schema:affiliation https://www.grid.ac/institutes/grid.264200.2
110 schema:familyName Ball
111 schema:givenName Jonathan
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126614244.39
113 rdf:type schema:Person
114 https://www.grid.ac/institutes/grid.264200.2 schema:alternateName St George's, University of London
115 schema:name Lecturer in Intensive Care Medicine, St George's Hospital Medical School, London, UK
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
118 schema:name Lecturer in Medical Statistics, University of Bristol, Bristol, UK
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...