Polymorphisms in genes involved in estrogen and progesterone metabolism and mammographic density changes in women randomized to postmenopausal hormone therapy: ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-06

AUTHORS

Sarah J Lord, Wendy J Mack, David Van Den Berg, Malcolm C Pike, Sue A Ingles, Christopher A Haiman, Wei Wang, Yuri R Parisky, Howard N Hodis, Giske Ursin

ABSTRACT

INTRODUCTION: Mammographic density is a strong independent risk factor for breast cancer, and can be modified by hormonal exposures. Identifying genetic variants that determine increases in mammographic density in hormone users may be important in understanding hormonal carcinogenesis of the breast. METHODS: We obtained mammograms and DNA from 232 postmenopausal women aged 45 to 75 years who had participated in one of two randomized, double-blind clinical trials with estrogen therapy (104 women, taking 1 mg/day of micronized 17beta-estradiol, E2), combined estrogen and progestin therapy (34 women, taking 17beta-estradiol and 5 mg/day of medroxyprogesterone acetate for 12 days/month) or matching placebos (94 women). Mammographic percentage density (MPD) was measured on baseline and 12-month mammograms with a validated computer-assisted method. We evaluated polymorphisms in genes involved in estrogen metabolism (catechol-O-methyltransferase (COMT (Val158Met)), cytochrome P450 1B1 (CYP1B1 (Val432Leu)), UDP-glucuronosyltransferase 1A1 (UGT1A1 (<7/>or= 7 TA repeats))) and progesterone metabolism (aldo-keto reductase 1C4 (AKR1C4 (Leu311Val))) with changes in MPD. RESULTS: The adjusted mean change in MPD was +4.6% in the estrogen therapy arm and +7.2% in the combined estrogen and progestin therapy arm, compared with +0.02% in the placebo arm (P = 0.0001). None of the genetic variants predicted mammographic density changes in women using estrogen therapy. Both the AKR1C4 and the CYP1B1 polymorphisms predicted mammographic density change in the combined estrogen and progestin therapy group (P < 0.05). In particular, the eight women carrying one or two low-activity AKR1C4 Val alleles showed a significantly greater increase in MPD (16.7% and 29.3%) than women homozygous for the Leu allele (4.0%). CONCLUSION: Although based on small numbers, these findings suggest that the magnitude of the increase in mammographic density in women using combined estrogen and progestin therapy may be greater in those with genetically determined lower activity of enzymes that metabolize estrogen and progesterone. More... »

PAGES

r336

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/bcr999

DOI

http://dx.doi.org/10.1186/bcr999

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015104146

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15987428


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alcohol Oxidoreductases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aldehyde Reductase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aldo-Keto Reductases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aryl Hydrocarbon Hydroxylases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atherosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catechol O-Methyltransferase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytochrome P-450 CYP1B1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Double-Blind Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Estradiol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Estrogen Replacement Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucuronosyltransferase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postmenopause", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Progestins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lord", 
        "givenName": "Sarah J", 
        "id": "sg:person.0751666267.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751666267.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mack", 
        "givenName": "Wendy J", 
        "id": "sg:person.01215405142.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215405142.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Den Berg", 
        "givenName": "David", 
        "id": "sg:person.01027352664.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027352664.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pike", 
        "givenName": "Malcolm C", 
        "id": "sg:person.01327672373.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327672373.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ingles", 
        "givenName": "Sue A", 
        "id": "sg:person.01202315245.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202315245.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haiman", 
        "givenName": "Christopher A", 
        "id": "sg:person.012607214677.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607214677.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wei", 
        "id": "sg:person.0734053653.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734053653.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parisky", 
        "givenName": "Yuri R", 
        "id": "sg:person.0754261633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754261633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodis", 
        "givenName": "Howard N", 
        "id": "sg:person.01121277502.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121277502.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oslo", 
          "id": "https://www.grid.ac/institutes/grid.5510.1", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA", 
            "Department of Nutrition, University of Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ursin", 
        "givenName": "Giske", 
        "id": "sg:person.01131645746.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131645746.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/jama.288.3.321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000900542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000091607.77374.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001447860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000091607.77374.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001447860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/carcin/19.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002423166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008208514", 
          "https://doi.org/10.1186/bcr434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.03.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010064433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/95.1.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010524769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0027-5107(02)00333-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011826619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0027-5107(02)00333-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011826619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/91.12.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013227285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/92.4.328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015903237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-5122(93)90064-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017481091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-5122(93)90064-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017481091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008909128110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020535369", 
          "https://doi.org/10.1023/a:1008909128110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-200011000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022170401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-200011000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022170401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1986.tb16001.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022297731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa030830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025961519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021112121782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026177387", 
          "https://doi.org/10.1023/a:1021112121782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/21.16.3761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028217069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3510067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032899557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3510067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032899557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9378(99)70560-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033861849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9378(99)70560-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033861849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/carcin/bgg114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035004037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.283.4.485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035924988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/152.10.950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038024020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/humrep/deg059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052032459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0215(19990505)81:3<339::aid-ijc5>3.0.co;2-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052381053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/0264-6021:3510067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056715016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/87.21.1622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059819590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/87.9.670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059819855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jncimonographs.a024247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059962333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008571-199912000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060289694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008571-199912000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060289694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008571-199912000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060289694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-130-4_part_1-199902160-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073703162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-135-11-200112040-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073704921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074598707", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074689145", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074833487", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074881951", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075051738", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075268722", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.174.2.2136958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078358235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.174.1.2152982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078390019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.196.2.7617857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082436959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.epirev.a036105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082792712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083008451", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1997.15.10.3201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083161258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083208126", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083350340", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-06", 
    "datePublishedReg": "2005-06-01", 
    "description": "INTRODUCTION: Mammographic density is a strong independent risk factor for breast cancer, and can be modified by hormonal exposures. Identifying genetic variants that determine increases in mammographic density in hormone users may be important in understanding hormonal carcinogenesis of the breast.\nMETHODS: We obtained mammograms and DNA from 232 postmenopausal women aged 45 to 75 years who had participated in one of two randomized, double-blind clinical trials with estrogen therapy (104 women, taking 1 mg/day of micronized 17beta-estradiol, E2), combined estrogen and progestin therapy (34 women, taking 17beta-estradiol and 5 mg/day of medroxyprogesterone acetate for 12 days/month) or matching placebos (94 women). Mammographic percentage density (MPD) was measured on baseline and 12-month mammograms with a validated computer-assisted method. We evaluated polymorphisms in genes involved in estrogen metabolism (catechol-O-methyltransferase (COMT (Val158Met)), cytochrome P450 1B1 (CYP1B1 (Val432Leu)), UDP-glucuronosyltransferase 1A1 (UGT1A1 (<7/>or= 7 TA repeats))) and progesterone metabolism (aldo-keto reductase 1C4 (AKR1C4 (Leu311Val))) with changes in MPD.\nRESULTS: The adjusted mean change in MPD was +4.6% in the estrogen therapy arm and +7.2% in the combined estrogen and progestin therapy arm, compared with +0.02% in the placebo arm (P = 0.0001). None of the genetic variants predicted mammographic density changes in women using estrogen therapy. Both the AKR1C4 and the CYP1B1 polymorphisms predicted mammographic density change in the combined estrogen and progestin therapy group (P < 0.05). In particular, the eight women carrying one or two low-activity AKR1C4 Val alleles showed a significantly greater increase in MPD (16.7% and 29.3%) than women homozygous for the Leu allele (4.0%).\nCONCLUSION: Although based on small numbers, these findings suggest that the magnitude of the increase in mammographic density in women using combined estrogen and progestin therapy may be greater in those with genetically determined lower activity of enzymes that metabolize estrogen and progesterone.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/bcr999", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2691453", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438805", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2447064", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022375", 
        "issn": [
          "1465-5411", 
          "1465-542X"
        ], 
        "name": "Breast Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Polymorphisms in genes involved in estrogen and progesterone metabolism and mammographic density changes in women randomized to postmenopausal hormone therapy: results from a pilot study", 
    "pagination": "r336", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47f637e41e5ba1e3c2cfa595eb31ad086fec107d6a4f52ef1b370cea1c38d8a3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15987428"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100927353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/bcr999"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015104146"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/bcr999", 
      "https://app.dimensions.ai/details/publication/pub.1015104146"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fbcr999"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/bcr999'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/bcr999'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/bcr999'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/bcr999'


 

This table displays all metadata directly associated to this object as RDF triples.

358 TRIPLES      21 PREDICATES      95 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/bcr999 schema:about N08ec4633c3f34835b906465c58ee3bdf
2 N0ef74ef2752544778448d72fbe946b83
3 N105e22585e2c40299cdd99edc6450d37
4 N10aeb91f35ab4d5990681485f3b9b6d6
5 N1a9ef25bc29548ff8f4700179deb512c
6 N1e668f8049b1449da56ff4064fe9b90e
7 N1f9d670a1e2d4b2491185d366ea78d32
8 N24900979d36f495ea19d85a05558735a
9 N397a6ce72f354747aa4c81ca724efadf
10 N52ca7a06c891424e88c98f6a8f42a80c
11 N5fb0a22b7a194ea29cf9447b8c405712
12 N63ba43afd975423e9e1ece4764036978
13 N7b52e5b4c3164bcd89ed299b0f97001b
14 N8d7cb36299054ee4bc79689a70822a87
15 N99cc6c4053424c959b366c3a57f53b81
16 Naa9a094e6e8a4b6db500af176328a472
17 Nb6539db8b3204c5db0239df35a03a90a
18 Nc828df236b0f4f20b9ba2ee4bc1be7cd
19 Ncc877311be1e42acb006c4b16f24b261
20 Ncd89c0c0980e41c6b11ca97274513968
21 Nd14a8acc966640ad9e0fa52039093fdd
22 Nde8a0754f874413aa7497dc0382dc194
23 anzsrc-for:11
24 anzsrc-for:1103
25 schema:author N647331bd2f7e4bfd955faa99f770b7a5
26 schema:citation sg:pub.10.1023/a:1008909128110
27 sg:pub.10.1023/a:1021112121782
28 sg:pub.10.1186/bcr434
29 https://app.dimensions.ai/details/publication/pub.1074598707
30 https://app.dimensions.ai/details/publication/pub.1074689145
31 https://app.dimensions.ai/details/publication/pub.1074833487
32 https://app.dimensions.ai/details/publication/pub.1074881951
33 https://app.dimensions.ai/details/publication/pub.1075051738
34 https://app.dimensions.ai/details/publication/pub.1075268722
35 https://app.dimensions.ai/details/publication/pub.1083008451
36 https://app.dimensions.ai/details/publication/pub.1083208126
37 https://app.dimensions.ai/details/publication/pub.1083350340
38 https://doi.org/10.1001/jama.283.4.485
39 https://doi.org/10.1001/jama.288.3.321
40 https://doi.org/10.1002/(sici)1097-0215(19990505)81:3<339::aid-ijc5>3.0.co;2-6
41 https://doi.org/10.1016/0378-5122(93)90064-o
42 https://doi.org/10.1016/s0002-9378(99)70560-0
43 https://doi.org/10.1016/s0027-5107(02)00333-0
44 https://doi.org/10.1042/0264-6021:3510067
45 https://doi.org/10.1042/bj3510067
46 https://doi.org/10.1056/nejmoa030830
47 https://doi.org/10.1093/aje/152.10.950
48 https://doi.org/10.1093/carcin/19.1.1
49 https://doi.org/10.1093/carcin/bgg114
50 https://doi.org/10.1093/humrep/deg059
51 https://doi.org/10.1093/jnci/87.21.1622
52 https://doi.org/10.1093/jnci/87.9.670
53 https://doi.org/10.1093/jnci/91.12.1067
54 https://doi.org/10.1093/jnci/92.4.328
55 https://doi.org/10.1093/jnci/95.1.30
56 https://doi.org/10.1093/nar/21.16.3761
57 https://doi.org/10.1093/oxfordjournals.epirev.a036105
58 https://doi.org/10.1093/oxfordjournals.jncimonographs.a024247
59 https://doi.org/10.1097/00001648-200011000-00004
60 https://doi.org/10.1097/00008571-199912000-00011
61 https://doi.org/10.1097/01.ede.0000091607.77374.74
62 https://doi.org/10.1111/j.1749-6632.1986.tb16001.x
63 https://doi.org/10.1148/radiology.174.1.2152982
64 https://doi.org/10.1148/radiology.174.2.2136958
65 https://doi.org/10.1148/radiology.196.2.7617857
66 https://doi.org/10.1200/jco.1997.15.10.3201
67 https://doi.org/10.1200/jco.2004.03.120
68 https://doi.org/10.7326/0003-4819-130-4_part_1-199902160-00003
69 https://doi.org/10.7326/0003-4819-135-11-200112040-00005
70 schema:datePublished 2005-06
71 schema:datePublishedReg 2005-06-01
72 schema:description INTRODUCTION: Mammographic density is a strong independent risk factor for breast cancer, and can be modified by hormonal exposures. Identifying genetic variants that determine increases in mammographic density in hormone users may be important in understanding hormonal carcinogenesis of the breast. METHODS: We obtained mammograms and DNA from 232 postmenopausal women aged 45 to 75 years who had participated in one of two randomized, double-blind clinical trials with estrogen therapy (104 women, taking 1 mg/day of micronized 17beta-estradiol, E2), combined estrogen and progestin therapy (34 women, taking 17beta-estradiol and 5 mg/day of medroxyprogesterone acetate for 12 days/month) or matching placebos (94 women). Mammographic percentage density (MPD) was measured on baseline and 12-month mammograms with a validated computer-assisted method. We evaluated polymorphisms in genes involved in estrogen metabolism (catechol-O-methyltransferase (COMT (Val158Met)), cytochrome P450 1B1 (CYP1B1 (Val432Leu)), UDP-glucuronosyltransferase 1A1 (UGT1A1 (<7/>or= 7 TA repeats))) and progesterone metabolism (aldo-keto reductase 1C4 (AKR1C4 (Leu311Val))) with changes in MPD. RESULTS: The adjusted mean change in MPD was +4.6% in the estrogen therapy arm and +7.2% in the combined estrogen and progestin therapy arm, compared with +0.02% in the placebo arm (P = 0.0001). None of the genetic variants predicted mammographic density changes in women using estrogen therapy. Both the AKR1C4 and the CYP1B1 polymorphisms predicted mammographic density change in the combined estrogen and progestin therapy group (P < 0.05). In particular, the eight women carrying one or two low-activity AKR1C4 Val alleles showed a significantly greater increase in MPD (16.7% and 29.3%) than women homozygous for the Leu allele (4.0%). CONCLUSION: Although based on small numbers, these findings suggest that the magnitude of the increase in mammographic density in women using combined estrogen and progestin therapy may be greater in those with genetically determined lower activity of enzymes that metabolize estrogen and progesterone.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree true
76 schema:isPartOf N9820ae50f7864b868b897094b136b70c
77 Na07d93b872384b95a9ab95b7aa8ae300
78 sg:journal.1022375
79 schema:name Polymorphisms in genes involved in estrogen and progesterone metabolism and mammographic density changes in women randomized to postmenopausal hormone therapy: results from a pilot study
80 schema:pagination r336
81 schema:productId N1ab8445342874a51a4703b29fb206325
82 N6d1c30223316476a94ffef1823b2cd88
83 N7b46673d154b49c8b2a3328a1759bb78
84 Ne9162b8580a54edba1a3569073abcbb0
85 Nf4d31c50a39744a385f1ac7d8a623579
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015104146
87 https://doi.org/10.1186/bcr999
88 schema:sdDatePublished 2019-04-10T17:37
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N578ae9f962d448c98e5614e9b6044588
91 schema:url http://link.springer.com/10.1186%2Fbcr999
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N01405e02359a4f269570895098350d51 rdf:first sg:person.0734053653.80
96 rdf:rest N9d5c650887ef4e84887697378a03ae63
97 N08ec4633c3f34835b906465c58ee3bdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Middle Aged
99 rdf:type schema:DefinedTerm
100 N09558e9d4ce8416ca7ab041a6d154654 rdf:first sg:person.01131645746.31
101 rdf:rest rdf:nil
102 N0c274d5ed61346feb7afa115e97c7c17 rdf:first sg:person.01027352664.02
103 rdf:rest N1c2b1a65d9a84402bb1ec0adda3c12ee
104 N0ef74ef2752544778448d72fbe946b83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Aryl Hydrocarbon Hydroxylases
106 rdf:type schema:DefinedTerm
107 N105e22585e2c40299cdd99edc6450d37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Cytochrome P-450 CYP1B1
109 rdf:type schema:DefinedTerm
110 N10aeb91f35ab4d5990681485f3b9b6d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Progestins
112 rdf:type schema:DefinedTerm
113 N1a9ef25bc29548ff8f4700179deb512c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Double-Blind Method
115 rdf:type schema:DefinedTerm
116 N1ab8445342874a51a4703b29fb206325 schema:name pubmed_id
117 schema:value 15987428
118 rdf:type schema:PropertyValue
119 N1c2b1a65d9a84402bb1ec0adda3c12ee rdf:first sg:person.01327672373.79
120 rdf:rest N2e9a14373cbd4100b21e0fcfbd3be329
121 N1e668f8049b1449da56ff4064fe9b90e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Aldehyde Reductase
123 rdf:type schema:DefinedTerm
124 N1f9d670a1e2d4b2491185d366ea78d32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Catechol O-Methyltransferase
126 rdf:type schema:DefinedTerm
127 N21cdb9c407164f898449aa4a29d33d6f rdf:first sg:person.01215405142.92
128 rdf:rest N0c274d5ed61346feb7afa115e97c7c17
129 N24900979d36f495ea19d85a05558735a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Aged
131 rdf:type schema:DefinedTerm
132 N2e9a14373cbd4100b21e0fcfbd3be329 rdf:first sg:person.01202315245.46
133 rdf:rest Nb0b0a696515a4c1d8c247c9771b7256e
134 N397a6ce72f354747aa4c81ca724efadf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Aldo-Keto Reductases
136 rdf:type schema:DefinedTerm
137 N52ca7a06c891424e88c98f6a8f42a80c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Pilot Projects
139 rdf:type schema:DefinedTerm
140 N578ae9f962d448c98e5614e9b6044588 schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 N5fb0a22b7a194ea29cf9447b8c405712 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Glucuronosyltransferase
144 rdf:type schema:DefinedTerm
145 N63ba43afd975423e9e1ece4764036978 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Estradiol
147 rdf:type schema:DefinedTerm
148 N647331bd2f7e4bfd955faa99f770b7a5 rdf:first sg:person.0751666267.44
149 rdf:rest N21cdb9c407164f898449aa4a29d33d6f
150 N6d1c30223316476a94ffef1823b2cd88 schema:name nlm_unique_id
151 schema:value 100927353
152 rdf:type schema:PropertyValue
153 N7b46673d154b49c8b2a3328a1759bb78 schema:name dimensions_id
154 schema:value pub.1015104146
155 rdf:type schema:PropertyValue
156 N7b52e5b4c3164bcd89ed299b0f97001b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Radiography
158 rdf:type schema:DefinedTerm
159 N8d7cb36299054ee4bc79689a70822a87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Risk Factors
161 rdf:type schema:DefinedTerm
162 N9820ae50f7864b868b897094b136b70c schema:volumeNumber 7
163 rdf:type schema:PublicationVolume
164 N99cc6c4053424c959b366c3a57f53b81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Alcohol Oxidoreductases
166 rdf:type schema:DefinedTerm
167 N9d5c650887ef4e84887697378a03ae63 rdf:first sg:person.0754261633.09
168 rdf:rest Nf196b4b7226c4ed482233c1dae7f5d5f
169 Na07d93b872384b95a9ab95b7aa8ae300 schema:issueNumber 3
170 rdf:type schema:PublicationIssue
171 Naa9a094e6e8a4b6db500af176328a472 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Humans
173 rdf:type schema:DefinedTerm
174 Nb0b0a696515a4c1d8c247c9771b7256e rdf:first sg:person.012607214677.06
175 rdf:rest N01405e02359a4f269570895098350d51
176 Nb6539db8b3204c5db0239df35a03a90a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Postmenopause
178 rdf:type schema:DefinedTerm
179 Nc828df236b0f4f20b9ba2ee4bc1be7cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Breast Neoplasms
181 rdf:type schema:DefinedTerm
182 Ncc877311be1e42acb006c4b16f24b261 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Polymorphism, Genetic
184 rdf:type schema:DefinedTerm
185 Ncd89c0c0980e41c6b11ca97274513968 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Female
187 rdf:type schema:DefinedTerm
188 Nd14a8acc966640ad9e0fa52039093fdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Atherosclerosis
190 rdf:type schema:DefinedTerm
191 Nde8a0754f874413aa7497dc0382dc194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Estrogen Replacement Therapy
193 rdf:type schema:DefinedTerm
194 Ne9162b8580a54edba1a3569073abcbb0 schema:name doi
195 schema:value 10.1186/bcr999
196 rdf:type schema:PropertyValue
197 Nf196b4b7226c4ed482233c1dae7f5d5f rdf:first sg:person.01121277502.44
198 rdf:rest N09558e9d4ce8416ca7ab041a6d154654
199 Nf4d31c50a39744a385f1ac7d8a623579 schema:name readcube_id
200 schema:value 47f637e41e5ba1e3c2cfa595eb31ad086fec107d6a4f52ef1b370cea1c38d8a3
201 rdf:type schema:PropertyValue
202 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
203 schema:name Medical and Health Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
206 schema:name Clinical Sciences
207 rdf:type schema:DefinedTerm
208 sg:grant.2438805 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr999
209 rdf:type schema:MonetaryGrant
210 sg:grant.2447064 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr999
211 rdf:type schema:MonetaryGrant
212 sg:grant.2691453 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr999
213 rdf:type schema:MonetaryGrant
214 sg:journal.1022375 schema:issn 1465-5411
215 1465-542X
216 schema:name Breast Cancer Research
217 rdf:type schema:Periodical
218 sg:person.01027352664.02 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
219 schema:familyName Van Den Berg
220 schema:givenName David
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027352664.02
222 rdf:type schema:Person
223 sg:person.01121277502.44 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
224 schema:familyName Hodis
225 schema:givenName Howard N
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121277502.44
227 rdf:type schema:Person
228 sg:person.01131645746.31 schema:affiliation https://www.grid.ac/institutes/grid.5510.1
229 schema:familyName Ursin
230 schema:givenName Giske
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131645746.31
232 rdf:type schema:Person
233 sg:person.01202315245.46 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
234 schema:familyName Ingles
235 schema:givenName Sue A
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202315245.46
237 rdf:type schema:Person
238 sg:person.01215405142.92 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
239 schema:familyName Mack
240 schema:givenName Wendy J
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215405142.92
242 rdf:type schema:Person
243 sg:person.012607214677.06 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
244 schema:familyName Haiman
245 schema:givenName Christopher A
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607214677.06
247 rdf:type schema:Person
248 sg:person.01327672373.79 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
249 schema:familyName Pike
250 schema:givenName Malcolm C
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327672373.79
252 rdf:type schema:Person
253 sg:person.0734053653.80 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
254 schema:familyName Wang
255 schema:givenName Wei
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734053653.80
257 rdf:type schema:Person
258 sg:person.0751666267.44 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
259 schema:familyName Lord
260 schema:givenName Sarah J
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751666267.44
262 rdf:type schema:Person
263 sg:person.0754261633.09 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
264 schema:familyName Parisky
265 schema:givenName Yuri R
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754261633.09
267 rdf:type schema:Person
268 sg:pub.10.1023/a:1008909128110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020535369
269 https://doi.org/10.1023/a:1008909128110
270 rdf:type schema:CreativeWork
271 sg:pub.10.1023/a:1021112121782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026177387
272 https://doi.org/10.1023/a:1021112121782
273 rdf:type schema:CreativeWork
274 sg:pub.10.1186/bcr434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008208514
275 https://doi.org/10.1186/bcr434
276 rdf:type schema:CreativeWork
277 https://app.dimensions.ai/details/publication/pub.1074598707 schema:CreativeWork
278 https://app.dimensions.ai/details/publication/pub.1074689145 schema:CreativeWork
279 https://app.dimensions.ai/details/publication/pub.1074833487 schema:CreativeWork
280 https://app.dimensions.ai/details/publication/pub.1074881951 schema:CreativeWork
281 https://app.dimensions.ai/details/publication/pub.1075051738 schema:CreativeWork
282 https://app.dimensions.ai/details/publication/pub.1075268722 schema:CreativeWork
283 https://app.dimensions.ai/details/publication/pub.1083008451 schema:CreativeWork
284 https://app.dimensions.ai/details/publication/pub.1083208126 schema:CreativeWork
285 https://app.dimensions.ai/details/publication/pub.1083350340 schema:CreativeWork
286 https://doi.org/10.1001/jama.283.4.485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035924988
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1001/jama.288.3.321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000900542
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1002/(sici)1097-0215(19990505)81:3<339::aid-ijc5>3.0.co;2-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052381053
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1016/0378-5122(93)90064-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1017481091
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1016/s0002-9378(99)70560-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033861849
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1016/s0027-5107(02)00333-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011826619
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1042/0264-6021:3510067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056715016
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1042/bj3510067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032899557
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1056/nejmoa030830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025961519
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1093/aje/152.10.950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038024020
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1093/carcin/19.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002423166
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1093/carcin/bgg114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035004037
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1093/humrep/deg059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052032459
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1093/jnci/87.21.1622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059819590
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1093/jnci/87.9.670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059819855
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1093/jnci/91.12.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013227285
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1093/jnci/92.4.328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015903237
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1093/jnci/95.1.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010524769
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1093/nar/21.16.3761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028217069
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1093/oxfordjournals.epirev.a036105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082792712
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1093/oxfordjournals.jncimonographs.a024247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059962333
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1097/00001648-200011000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022170401
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1097/00008571-199912000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060289694
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1097/01.ede.0000091607.77374.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001447860
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1111/j.1749-6632.1986.tb16001.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022297731
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1148/radiology.174.1.2152982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078390019
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1148/radiology.174.2.2136958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078358235
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1148/radiology.196.2.7617857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082436959
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1200/jco.1997.15.10.3201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083161258
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1200/jco.2004.03.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010064433
345 rdf:type schema:CreativeWork
346 https://doi.org/10.7326/0003-4819-130-4_part_1-199902160-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073703162
347 rdf:type schema:CreativeWork
348 https://doi.org/10.7326/0003-4819-135-11-200112040-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073704921
349 rdf:type schema:CreativeWork
350 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
351 schema:name Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
352 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
353 Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
354 rdf:type schema:Organization
355 https://www.grid.ac/institutes/grid.5510.1 schema:alternateName University of Oslo
356 schema:name Department of Nutrition, University of Oslo, Norway
357 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
358 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...